0000000000703846

AUTHOR

Marco Sammartino

A velocity–diffusion method for a Lotka–Volterra system with nonlinear cross and self-diffusion

The aim of this paper is to introduce a deterministic particle method for the solution of two strongly coupled reaction-diffusion equations. In these equations the diffusion is nonlinear because we consider the cross and self-diffusion effects. The reaction terms on which we focus are of the Lotka-Volterra type. Our treatment of the diffusion terms is a generalization of the idea, introduced in [P. Degond, F.-J. Mustieles, A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Stat. Comput. 11 (1990) 293-310] for the linear diffusion, of interpreting Fick's law in a deterministic way as a prescription on the particle velocity. Time discretization is based on the …

research product

Zero viscosity limit of the Oseen equations in a channel

Oseen equations in the channel are considered. We give an explicit solution formula in terms of the inverse heat operators and of projection operators. This solution formula is used for the analysis of the behavior of the Oseen equations in the zero viscosity limit. We prove that the solution of Oseen equations converges in W1,2 to the solution of the linearized Euler equations outside the boundary layer and to the solution of the linearized Prandtl equations inside the boundary layer. © 2001 Society for Industrial and Applied Mathematics.

research product

Complex singularities in KdV solutions

In the small dispersion regime, the KdV solution exhibits rapid oscillations in its spatio-temporal dependence. We show that these oscillations are caused by the presence of complex singularities that approach the real axis. We give a numerical estimate of the asymptotic dynamics of the poles.

research product

A new framework for the time- and frequency-domain assessment of high-order interactions in networks of random processes

While the standard network description of complex systems is based on quantifying the link between pairs of system units, higher-order interactions (HOIs) involving three or more units often play a major role in governing the collective network behavior. This work introduces a new approach to quantify pairwise and HOIs for multivariate rhythmic processes interacting across multiple time scales. We define the so-called O-information rate (OIR) as a new metric to assess HOIs for multivariate time series, and present a framework to decompose the OIR into measures quantifying Granger-causal and instantaneous influences, as well as to expand all measures in the frequency domain. The framework ex…

research product

Global linear feedback control for the generalized Lorenz system

Abstract In this paper we show how the chaotic behavior of the Chen system can be controlled via feedback technique. We design both a nonlinear feedback controller and a linear one which globally regulate the closed-loop system states to a given point. We finally show that our approach works also for the whole family of the generalized Lorenz system.

research product

Analysis of complex singularities in high-Reynolds-number Navier-Stokes solutions

AbstractNumerical solutions of the laminar Prandtl boundary-layer and Navier–Stokes equations are considered for the case of the two-dimensional uniform flow past an impulsively-started circular cylinder. The various viscous–inviscid interactions that occur during the unsteady separation process are investigated by applying complex singularity analysis to the wall shear and streamwise velocity component of the two solutions. This is carried out using two different methodologies, namely a singularity-tracking method and the Padé approximation. It is shown how the van Dommelen and Shen singularity that occurs in solutions of the Prandtl boundary-layer equations evolves in the complex plane be…

research product

A note on the analytic solutions of the Camassa-Holm equation

Abstract In this Note we are concerned with the well-posedness of the Camassa–Holm equation in analytic function spaces. Using the Abstract Cauchy–Kowalewski Theorem we prove that the Camassa–Holm equation admits, locally in time, a unique analytic solution. Moreover, if the initial data is real analytic, belongs to H s ( R ) with s > 3 / 2 , ‖ u 0 ‖ L 1 ∞ and u 0 − u 0 x x does not change sign, we prove that the solution stays analytic globally in time. To cite this article: M.C. Lombardo et al., C. R. Acad. Sci. Paris, Ser. I 341 (2005).

research product

Zero Viscosity Limit for Analytic Solutions, of the Navier-Stokes Equation on a Half-Space.¶I. Existence for Euler and Prandtl Equations

This is the first of two papers on the zero-viscosity limit for the incompressible Navier-Stokes equations in a half-space. In this paper we prove short time existence theorems for the Euler and Prandtl equations with analytic initial data in either two or three spatial dimensions. The main technical tool in this analysis is the abstract Cauchy-Kowalewski theorem. For the Euler equations, the projection method is used in the primitive variables, to which the Cauchy-Kowalewski theorem is directly applicable. For the Prandtl equations, Cauchy-Kowalewski is applicable once the diffusion operator in the vertical direction is inverted.

research product

Adaptive control of a seven mode truncation of the Kolmogorov flow with drag

Abstract We study a seven dimensional nonlinear dynamical system obtained by a truncation of the Navier–Stokes equations for a two dimensional incompressible fluid with the addition of a linear term modelling the drag friction. We show the bifurcation sequence leading from laminar steady states to chaotic solutions with increasing Reynolds number. Finally, we design an adaptive control which drives the state of the system to the equilibrium point representing the stationary solution.

research product

Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth

We focus on the morphochemical reaction–diffusion model introduced in Bozzini et al. (2013) and carry out a nonlinear bifurcation analysis with the aim to characterize the shape and the amplitude of the patterns arising as the result of Turing instability of the physically relevant equilibrium. We perform a weakly nonlinear multiple scales analysis, and derive the normal form equations governing the amplitude of the patterns. These amplitude equations allow us to construct relevant solutions of the model equations and reveal the presence of multiple branches of stable solutions arising as the result of subcritical bifurcations. Hysteretic type phenomena are highlighted also through numerica…

research product

Cross-Diffusion Driven Instability in a Predator-Prey System with Cross-Diffusion

In this work we investigate the process of pattern formation induced by nonlinear diffusion in a reaction-diffusion system with Lotka-Volterra predator-prey kinetics. We show that the cross-diffusion term is responsible of the destabilizing mechanism that leads to the emergence of spatial patterns. Near marginal stability we perform a weakly nonlinear analysis to predict the amplitude and the form of the pattern, deriving the Stuart-Landau amplitude equations. Moreover, in a large portion of the subcritical zone, numerical simulations show the emergence of oscillating patterns, which cannot be predicted by the weakly nonlinear analysis. Finally when the pattern invades the domain as a trave…

research product

Pattern formation driven by cross–diffusion in a 2D domain

Abstract In this work we investigate the process of pattern formation in a two dimensional domain for a reaction–diffusion system with nonlinear diffusion terms and the competitive Lotka–Volterra kinetics. The linear stability analysis shows that cross-diffusion, through Turing bifurcation, is the key mechanism for the formation of spatial patterns. We show that the bifurcation can be regular, degenerate non-resonant and resonant. We use multiple scales expansions to derive the amplitude equations appropriate for each case and show that the system supports patterns like rolls, squares, mixed-mode patterns, supersquares, and hexagonal patterns.

research product

European Option Pricing with Transaction Costs and Stochastic Volatility: an Asymptotic Analysis

In this paper the valuation problem of a European call option in presence of both stochastic volatility and transaction costs is considered. In the limit of small transaction costs and fast mean reversion, an asymptotic expression for the option price is obtained. While the dominant term in the expansion it is shown to be the classical Black and Scholes solution, the correction terms appear at $O(\varepsilon^{1/2})$ and $O(\varepsilon)$. The optimal hedging strategy is then explicitly obtained for the Scott's model.

research product

Vortex layers of small thickness

We consider a 2D vorticity configuration where vorticity is highly concentrated around a curve and exponentially decaying away from it: the intensity of the vorticity is $O(1/epsilon)$ on the curve while it decays on an $O(epsilon)$ distance from the curve itself. We prove that, if the initial datum is of vortex-layer type, Euler solutions preserve this structure for a time which does not depend on $epsilon$. Moreover the motion of the center of the layer is well approximated by the Birkhoff-Rott equation.

research product

Singularity formation and separation phenomena in boundary layer theory

In this paper we review some results concerning the behaviour of the incompressible Navier–Stokes solutions in the zero viscosity limit. Most of the emphasis is put on the phenomena occurring in the boundary layer created when the no-slip condition is imposed. Numerical simulations are used to explore the limits of the theory. We also consider the case of 2D vortex layers, i.e. flows with internal layers in the form of a rapid variation, across a curve, of the tangential velocity.

research product

Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array

In this paper we investigate the asymptotic validity of boundary layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl's solution to Navier-Stokes solutions at different $Re$ numbers. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions between the boundary layer and the outer flow. These interactions can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous int…

research product

Regularized Euler-alpha motion of an infinite array of vortex sheets

We consider the Euler- $$\alpha $$ regularization of the Birkhoff–Rott equation and compare its solutions with the dynamics of the non regularized vortex-sheet. For a flow induced by an infinite array of planar vortex-sheets we analyze the complex singularities of the solutions.Through the singularity tracking method we show that the regularized solution has several complex singularities that approach the real axis. We relate their presence to the formation of two high-curvature points in the vortex sheet during the roll-up phenomenon.

research product

LONG TIME BEHAVIOR OF A SHALLOW WATER MODEL FOR A BASIN WITH VARYING BOTTOM TOPOGRAPHY

We study the long time behavior of a shallow water model introduced by Levermore and Sammartino to describe the motion of a viscous incompressible fluid confined in a basin with topography. Here we prove the existence of a global attractor and give an estimate on its Hausdorff and fractal dimension.

research product

Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion

In this paper the Turing pattern formation mechanism of a two components reaction-diffusion system modeling the Schnakenberg chemical reaction is considered. In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how the presence of linear cross-diffusion terms favors the destabilization of the constant steady state. We perform the weakly nonlinear multiple scales analysis to derive the equations for the amplitude of the Turing patterns and to show how the cross-diffusion coefficients influence the occurrence of super-critical or sub-critical bifurcations. We present a numerical exploration of far from equilibrium regimes and prove the existence of multistable stationary…

research product

Route to chaos in the weakly stratified Kolmogorov flow

We consider a two-dimensional fluid exposed to Kolmogorov’s forcing cos(ny) and heated from above. The stabilizing effects of temperature are taken into account using the Boussinesq approximation. The fluid with no temperature stratification has been widely studied and, although relying on strong simplifications, it is considered an important tool for the theoretical and experimental study of transition to turbulence. In this paper, we are interested in the set of transitions leading the temperature stratified fluid from the laminar solution [U∝cos(ny),0, T ∝ y] to more complex states until the onset of chaotic states. We will consider Reynolds numbers 0 < Re ≤ 30, while the Richardson numb…

research product

Existence and uniqueness for the Prandtl equations

International audience; Under the hypothesis of analyticity of the data with respect to the tangential variable we prove the existence and uniqueness of the mild solution of Prandtl boundary layer equation. This can be considered an improvement of the results of [8] as we do not require analyticity with respect to the normal variable. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.

research product

VORTEX LAYERS IN THE SMALL VISCOSITY LIMIT

In this paper we suppose that the initial datum for the 2D Navier–Stokes equations are of the vortex layer type, in the sense that there is a rapid variation in the tangential component across a curve. The variation occurs through a distance which is of the same order of the square root of the viscosity. Assuming the initial as well the matching (with the outer flow) data analytic, we show that our model equations are well posed. Another necessary assumption is that the radius of curvature of the curve is much larger than the thickness of the layer.

research product

Numerical study of the primitive equations in the small viscosity regime

In this paper we study the flow dynamics governed by the primitive equations in the small viscosity regime. We consider an initial setup consisting on two dipolar structures interacting with a no slip boundary at the bottom of the domain. The generated boundary layer is analyzed in terms of the complex singularities of the horizontal pressure gradient and of the vorticity generated at the boundary. The presence of complex singularities is correlated with the appearance of secondary recirculation regions. Two viscosity regimes, with different qualitative properties, can be distinguished in the flow dynamics.

research product

High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex array

Numerical solutions of Prandtl’s equation and Navier Stokes equations are considered for the two dimensional flow induced by an array of periodic rec- tilinear vortices interacting with an infinite plane. We show how this initial datum develops a separation singularity for Prandtl equation. We investigate the asymptotic validity of boundary layer theory considering numerical solu- tions for the full Navier Stokes equations at high Reynolds numbers.

research product

Transitions in a stratified Kolmogorov flow

We study the Kolmogorov flow with weak stratification. We consider a stabilizing uniform temperature gradient and examine the transitions leading the flow to chaotic states. By solving the equations numerically we construct the bifurcation diagram describing how the Kolmogorov flow, through a sequence of transitions, passes from its laminar solution toward weakly chaotic states. We consider the case when the Richardson number (measure of the intensity of the temperature gradient) is $$Ri=10^{-5}$$ , and restrict our analysis to the range $$0<Re<30$$ . The effect of the stabilizing temperature is to shift bifurcation points and to reduce the region of existence of stable drifting states. The…

research product

Eckhaus and zigzag instability in a chemotaxis model of multiple sclerosis

We present a theoretical and numerical study of the bifurcations of the stationary patterns supported by a chemotactic model of Multiple Sclerosis (MS). We derive the normal forms of the dynamics which allows to predict the appearance and stabilization of the emerging branches describing the concentric patterns typical of Balo's sclerosis, a very aggressive variant of MS. Spatial modulation of the Turing-type structures through a zigzag instability is also addressed. The nonlinear stage of the Eckhaus and zigzag instability is investigated numerically: defect-mediated wavenumber adjustments are recovered and the time of occurrence of phase-slips is studied as the system parameters are varie…

research product

Singular behavior of a vortex layer in the zero thickness limit

The aim of this paper is to study the Euler dynamics of a 2D periodic layer of non uniform vorticity. We consider the zero thickness limit and we compare the Euler solution with the vortex sheet evolution predicted by the Birkhoff-Rott equation. The well known process of singularity formation in shape of the vortex sheet correlates with the appearance of several complex singularities in the Euler solution with the vortex layer datum. These singularities approach the real axis and are responsible for the roll-up process in the layer motion.

research product

Formation of Coherent Structures in Kolmogorov Flow with Stratification and Drag

We study a weakly stratified Kolmogorov flow under the effect of a small linear drag. We perform a linear stability analysis of the basic state. We construct the finite dimensional dynamical system deriving from the truncated Fourier mode approximation. Using the Reynolds number as bifurcation parameter we build the corresponding diagram up to Re=100. We observe the coexistence of three coherent structures.

research product

Existence and Singularities for the Prandtl Boundary Layer Equations

Prandtl's boundary layer equations, first formulated in 1904, resolve the differences between the viscous and inviscid description of fluid flows. This paper presents a review of mathematical results, both analytic and computational, on the unsteady boundary layer equations. This includes a review of the derivation and basic properties of the equations, singularity formation, well-posedness results, and infinite Reynolds number limits.

research product

Turing pattern formation in the Brusselator system with nonlinear diffusion.

In this work we investigate the effect of density dependent nonlinear diffusion on pattern formation in the Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion favors the occurrence of Turing pattern formation. We study the process of pattern formation both in 1D and 2D spatial domains. Through a weakly nonlinear multiple scales analysis we derive the equations for the amplitude of the stationary patterns. The analysis of the amplitude equations shows the occurrence of a number of different phenomena, including stable supe…

research product

Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion

In this work we investigate the phenomena of pattern formation and wave propagation for a reaction–diffusion system with nonlinear diffusion. We show how cross-diffusion destabilizes uniform equilibrium and is responsible for the initiation of spatial patterns. Near marginal stability, through a weakly nonlinear analysis, we are able to predict the shape and the amplitude of the pattern. For the amplitude, in the supercritical and in the subcritical case, we derive the cubic and the quintic Stuart–Landau equation respectively. When the size of the spatial domain is large, and the initial perturbation is localized, the pattern is formed sequentially and invades the whole domain as a travelin…

research product

On the Prandtl Boundary Layer Equations in Presence of Corner Singularities

In this paper we prove the well-posedness of the Prandtl boundary layer equations on a periodic strip when the initial and the boundary data are not assigned to be compatible.

research product

Singularity formation for Prandtl’s equations

Abstract We consider Prandtl’s equations for an impulsively started disk and follow the process of the formation of the singularity in the complex plane using the singularity tracking method. We classify Van Dommelen and Shen’s singularity as a cubic root singularity. We introduce a class of initial data, uniformly bounded in H 1 , which have a dipole singularity in the complex plane. These data lead to a solution blow-up whose time can be made arbitrarily short within the class. This is numerical evidence of the ill-posedness of the Prandtl equations in H 1 . The presence of a small viscosity in the streamwise direction changes the behavior of the singularities. They stabilize at a distanc…

research product

Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space.¶ II. Construction of the Navier-Stokes Solution

This is the second of two papers on the zero-viscosity limit for the incompressible Navier-Stokes equations in a half-space in either 2D or 3D. Under the assumption of analytic initial data, we construct solutions of Navier-Stokes for a short time which is independent of the viscosity. The Navier-Stokes solution is constructed through a composite asymptotic expansion involving the solutions of the Euler and Prandtl equations, which were constructed in the first paper, plus an error term. This shows that the Navier-Stokes solution goes to an Euler solution outside a boundary layer and to a solution of the Prandtl equations within the boundary layer. The error term is written as a sum of firs…

research product

Singularity tracking for Camassa-Holm and Prandtl's equations

In this paper we consider the phenomenon of singularity formation for the Camassa-Holm equation and for Prandtl's equations. We solve these equations using spectral methods. Then we track the singularity in the complex plane estimating the rate of decay of the Fourier spectrum. This method allows us to follow the process of the singularity formation as the singularity approaches the real axis.

research product

Pattern selection in the 2D FitzHugh–Nagumo model

We construct square and target patterns solutions of the FitzHugh–Nagumo reaction–diffusion system on planar bounded domains. We study the existence and stability of stationary square and super-square patterns by performing a close to equilibrium asymptotic weakly nonlinear expansion: the emergence of these patterns is shown to occur when the bifurcation takes place through a multiplicity-two eigenvalue without resonance. The system is also shown to support the formation of axisymmetric target patterns whose amplitude equation is derived close to the bifurcation threshold. We present several numerical simulations validating the theoretical results.

research product

Wavefront invasion for a chemotaxis model of Multiple Sclerosis

In this work we study wavefront propagation for a chemotaxis reaction-diffusion system describing the demyelination in Multiple Sclerosis. Through a weakly non linear analysis, we obtain the Ginzburg–Landau equation governing the evolution of the amplitude of the pattern. We validate the analytical findings through numerical simulations. We show the existence of traveling wavefronts connecting two different steady solutions of the equations. The proposed model reproduces the progression of the disease as a wave: for values of the chemotactic parameter below threshold, the wave leaves behind a homogeneous plaque of apoptotic oligodendrocytes. For values of the chemotactic coefficient above t…

research product

Brain-like large scale cognitive networks and dynamics

A new approach to the study of the brain and its functions known as Human Connectomics has been recently established. Starting from magnetic resonance images (MRI) of brain scans, it is possible to identify the fibers that link brain areas and to build an adjacency matrix that connects these areas, thus creating the brain connectome. The topology of these networks provides a lot of information about the organizational structure of the brain (both structural and functional). Nevertheless this knowledge is rarely used to investigate the possible emerging brain dynamics linked to cognitive functions. In this work, we implement finite state models on neural networks to display the outcoming bra…

research product

ASYMPTOTIC ANALYSIS OF THE LINEARIZED NAVIER–STOKES EQUATION ON AN EXTERIOR CIRCULAR DOMAIN: EXPLICIT SOLUTION AND THE ZERO VISCOSITY LIMIT

In this paper we study and derive explicit formulas for the linearized Navier-Stokes equations on an exterior circular domain in space dimension two. Through an explicit construction, the solution is decomposed into an inviscid solution, a boundary layer solution and a corrector. Bounds on these solutions are given, in the appropriate Sobolev spaces, in terms of the norms of the initial and boundary data. The correction term is shown to be of the same order of magnitude as the square root of the viscosity. Copyright © 2001 by Marcel Dekker, Inc.

research product

Long time behavior for a dissipative shallow water model

We consider the two-dimensional shallow water model derived by Levermore and Sammartino (Nonlinearity 14,2001), describing the motion of an incompressible fluid, confined in a shallow basin, with varying bottom topography. We construct the approximate inertial manifolds for the associated dynamical system and estimate its order. Finally, considering the whole domain R^2 and under suitable conditions on the time dependent forcing term, we prove the L^2 asymptotic decay of the weak solutions.

research product

A Seven Mode Truncation of the Kolmogorov Flow with Drag: Analysis and Control

The transition from laminar to chaotic motions in a viscous °uid °ow is in- vestigated by analyzing a seven dimensional dynamical system obtained by a truncation of the Fourier modes for the Kolmogorov °ow with drag friction. An- alytical expressions of the Hopf bifurcation curves are obtained and a sequence of period doubling bifurcations are numerically observed as the Reynolds num- ber is increased for ¯xed values of the drag parameter. An adaptive stabilization of the system trajectories to an equilibrium point or to a periodic orbit is ob- tained through a model reference approach which makes the control global. Finally, the e®ectiveness of this control strategy is numerically illustra…

research product

APPROXIMATE INERTIAL MANIFOLDS FOR THERMODIFFUSION EQUATIONS

In this paper, we consider the two dimensional equations of thermohydraulics, i.e. the coupled system of equations of fluid and temperature in the Boussinesq approximation. We construct a family of approximate Inertial Manifolds whose order decreases exponentially fast with respect to the dimension of the manifold. We give the explicit expression of the order of the constructed manifolds.

research product

Axisymmetric solutions for a chemotaxis model of Multiple Sclerosis

In this paper we study radially symmetric solutions for our recently proposed reaction–diffusion–chemotaxis model of Multiple Sclerosis. Through a weakly nonlinear expansion we classify the bifurcation at the onset and derive the amplitude equations ruling the formation of concentric demyelinating patterns which reproduce the concentric layers observed in Balò sclerosis and in the early phase of Multiple Sclerosis. We present numerical simulations which illustrate and fit the analytical results.

research product

Zero Viscosity Limit for Analytic Solutions of the Primitive Equations

The aim of this paper is to prove that the solutions of the primitive equations converge, in the zero viscosity limit, to the solutions of the hydrostatic Euler equations. We construct the solution of the primitive equations through a matched asymptotic expansion involving the solution of the hydrostatic Euler equation and boundary layer correctors as the first order term, and an error that we show to be \({O(\sqrt{\nu})}\). The main assumption is spatial analyticity of the initial datum.

research product

A shallow water model with eddy viscosity for basins with varying bottom topography

The motion of an incompressible fluid confined to a shallow basin with a varying bottom topography is considered. We introduce appropriate scalings into a three-dimensional anisotropic eddy viscosity model to derive a two-dimensional shallow water model. The global regularity of the resulting model is proved. The anisotropic form of the stress tensor in our three-dimensional eddy viscosity model plays a critical role in ensuring that the resulting shallow water model dissipates energy.

research product

Demyelination patterns in a mathematical model of multiple sclerosis.

In this paper we derive a reaction-diffusion-chemotaxis model for the dynamics of multiple sclerosis. We focus on the early inflammatory phase of the disease characterized by activated local microglia, with the recruitment of a systemically activated immune response, and by oligodendrocyte apoptosis. The model consists of three equations describing the evolution of macrophages, cytokine and apoptotic oligodendrocytes. The main driving mechanism is the chemotactic motion of macrophages in response to a chemical gradient provided by the cytokines. Our model generalizes the system proposed by Calvez and Khonsari (Math Comput Model 47(7–8):726–742, 2008) and Khonsari and Calvez (PLos ONE 2(1):e…

research product

Navier-Stokes equations on an exterior circular domain: construction of the solution and the zero viscosity limit

Abstract In this Note, we consider the limit of Navier-Stokes equations on a circular domain. By an explicit construction of the solution, it is proved that, when viscosity goes to zero, solution converges to the Euler solution outside the boundary layer and to the Prandtl solution inside the boundary layer.

research product

Well-posedness of the boundary layer equations

We consider the mild solutions of the Prandtl equations on the half space. Requiring analyticity only with respect to the tangential variable, we prove the short time existence and the uniqueness of the solution in the proper function space. Theproof is achieved applying the abstract Cauchy--Kowalewski theorem to the boundary layer equations once the convection-diffusion operator is explicitly inverted. This improves the result of [M. Sammartino and R. E. Caflisch, Comm. Math. Phys., 192 (1998), pp. 433--461], as we do not require analyticity of the data with respect to the normal variable.

research product

Pattern formation and transition to chaos in a chemotaxis model of acute inflammation

We investigate a reaction-diffusion-chemotaxis system that describes the immune response during an inflammatory attack. The model is a modification of the system proposed in Penner, Ermentrout, and Swigon [SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 629-660]. We introduce a logistic term in the immune cell dynamics to reproduce the macrophages' activation, allowing us to describe the disease evolution from the early stages to the acute phase. We focus on the appearance of pattern solutions and their stability. We discover steady-state (Turing) and wave instabilities and classify the bifurcations deriving the corresponding amplitude equations. We study stationary radially symmetric solutions an…

research product

A SUBCRITICAL BIFURCATION FOR A NONLINEAR REACTION–DIFFUSION SYSTEM

In this paper the mechanism of pattern formation for a reaction-diffusion system with nonlinear diffusion terms is investigated. Through a linear stability analysis we show that the cross-diffusion term allows the pattern formation. To predict the form and the amplitude of the pattern we perform a weakly nonlinear analysis. In the supercritical case the Stuart-Landau equation is found, which rules the evolution of the amplitude of the most unstable mode. With the increasing distance from the bifurcation value of the cross-diffusion parameter, the weakly nonlinear analysis fails and a Fourier–Galerkin approach is adopted. In the subcritical case the weakly nonlinear analysis must be pushed u…

research product

Asymptotic Analysis of a Slightly Rarefied Gas with Nonlocal Boundary Conditions

In this paper nonlocal boundary conditions for the Navier–Stokes equations are derived, starting from the Boltzmann equation in the limit for the Knudsen number being vanishingly small. In the same spirit of (Lombardo et al. in J. Stat. Phys. 130:69–82, 2008) where a nonlocal Poisson scattering kernel was introduced, a gaussian scattering kernel which models nonlocal interactions between the gas molecules and the wall boundary is proposed. It is proved to satisfy the global mass conservation and a generalized reciprocity relation. The asymptotic expansion of the boundary-value problem for the Boltzmann equation, provides, in the continuum limit, the Navier–Stokes equations associated with a…

research product

Well-posedness of Prandtl equations with non-compatible data

In this paper we shall be concerned with Prandtl's equations with incompatible data, i.e. with initial data that, in general, do not fulfil the boundary conditions imposed on the solution. Under the hypothesis of analyticity in the streamwise variable, we shall prove that Prandtl's equations, on the half-plane or on the half-space, are well posed for a short time.

research product

Turing Instability and Pattern Formation for the Lengyel–Epstein System with Nonlinear Diffusion

In this work we study the effect of density dependent nonlinear diffusion on pattern formation in the Lengyel---Epstein system. Via the linear stability analysis we determine both the Turing and the Hopf instability boundaries and we show how nonlinear diffusion intensifies the tendency to pattern formation; in particular, unlike the case of classical linear diffusion, the Turing instability can occur even when diffusion of the inhibitor is significantly slower than activator's one. In the Turing pattern region we perform the WNL multiple scales analysis to derive the equations for the amplitude of the stationary pattern, both in the supercritical and in the subcritical case. Moreover, we c…

research product

Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system.

In this paper we investigate the complex dynamics originated by a cross-diffusion-induced subharmonic destabilization of the fundamental subcritical Turing mode in a predator-prey reaction-diffusion system. The model we consider consists of a two-species Lotka-Volterra system with linear diffusion and a nonlinear cross-diffusion term in the predator equation. The taxis term in the search strategy of the predator is responsible for the onset of complex dynamics. In fact, our model does not exhibit any Hopf or wave instability, and on the basis of the linear analysis one should only expect stationary patterns; nevertheless, the presence of the nonlinear cross-diffusion term is able to induce …

research product

An equilibrium point regularization for the Chen system

This paper addresses the control of the chaotic Chen system via a feedback technique. We first present a nonlinear feedback controller which drives the trajectories of the Chen system to a given point for any initial conditions. Then, we design a linear feedback controller which still assures the global stability of the Chen system. We moreover achieve the tracking of a reference signal. Numerical simulations are provided to show the effectiveness of the developed controllers.

research product

Non-Local Scattering Kernel and the Hydrodynamic Limit

In this paper we study the interaction of a fluid with a wall in the framework of the kinetic theory. We consider the possibility that the fluid molecules can penetrate the wall to be reflected by the inner layers of the wall. This results in a scattering kernel which is a non-local generalization of the classical Maxwell scattering kernel. The proposed scattering kernel satisfies a global mass conservation law and a generalized reciprocity relation. We study the hydrodynamic limit performing a Knudsen layer analysis, and derive a new class of (weakly) nonlocal boundary conditions to be imposed to the Navier-Stokes equations.

research product

High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex

Abstract We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers Re = 103–105, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high Re numbers Re = 104–105. We also investi…

research product