0000000000788489

AUTHOR

Harri Lipsanen

Tuning of Emission Wavelength of CaS:Eu by Addition of Oxygen Using Atomic Layer Deposition

| openaire: EC/H2020/820423/EU//S2QUIP | openaire: EC/H2020/834742/EU//ATOP | openaire: EC/H2020/965124/EU//FEMTOCHIP Atomic layer deposition (ALD) technology has unlocked new ways of manipulating the growth of inorganic materials. The fine control at the atomic level allowed by ALD technology creates the perfect conditions for the inclusion of new cationic or anionic elements of the already-known materials. Consequently, novel material characteristics may arise with new functions for applications. This is especially relevant for inorganic luminescent materials where slight changes in the vicinity of the luminescent centers may originate new emission properties. Here, we studied the lumines…

research product

Comparison of mechanical properties and composition of magnetron sputter and plasma enhanced atomic layer deposition aluminum nitride films

A comparative study of mechanical properties and elemental and structural composition was made for aluminum nitride thin films deposited with reactive magnetron sputtering and plasma enhanced atomic layer deposition (PEALD). The sputtered films were deposited on Si (100), Mo (110), and Al (111) oriented substrates to study the effect of substrate texture on film properties. For the PEALD trimethylaluminum–ammonia films, the effects of process parameters, such as temperature, bias voltage, and plasma gas (ammonia versus N2/H2), on the AlN properties were studied. All the AlN films had a nominal thickness of 100 nm. Time-of-flight elastic recoil detection analysis showed the sputtered films t…

research product

Influence of plasma chemistry on impurity incorporation in AlN prepared by plasma enhanced atomic layer deposition

Impurities in aluminum nitride films prepared by plasma enhanced atomic layer deposition using NH3-, N2/H2- and N2-based plasmas are investigated by combining time-of-flight elastic recoil detection analysis (ERDA) and Fourier transform infrared spectroscopy. Different atomistic growth mechanisms are found to exist between the plasma chemistries. N2-plasma is shown as not suitable for the low-temperature deposition of AlN. Films deposited by NH3- and N2/H2-based processes are nitrogen rich and heavily hydrogenated. Carbon impurities exist at higher concentrations for the N2/H2-processes. The discovery of nitrile groups in the films indicates that carbon impurities can be partially attribute…

research product

Plasma etch characteristics of aluminum nitride mask layers grown by low-temperature plasma enhanced atomic layer deposition in SF6 based plasmas

The plasma etch characteristics of aluminum nitride (AlN) deposited by low-temperature, 200 °C, plasma enhanced atomic layer deposition (PEALD) was investigated for reactive ion etch (RIE) and inductively coupled plasma-reactive ion etch (ICP-RIE) systems using various mixtures of SF6 and O2 under different etch conditions. During RIE, the film exhibits good mask properties with etch rates below 10r nm/min. For ICP-RIE processes, the film exhibits exceptionally low etch rates in the subnanometer region with lower platen power. The AlN film’s removal occurred through physical mechanisms; consequently, rf power and chamber pressure were the most significant parameters in PEALD AlN film remova…

research product

Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films

Plasma-enhanced atomic layer deposition was utilized to grow aluminum nitride (AlN) films on Si from trimethylaluminum and N2:H2 plasma at 200 °C. Thermal treatments were then applied on the films which caused changes in their chemical composition and nanostructure. These changes were observed to manifest in the refractive indices and densities of the films. The AlN films were identified to contain light element impurities, namely, H, C, and excess N due to nonideal precursor reactions. Oxygen contamination was also identified in the films. Many of the embedded impurities became volatile in the elevated annealing temperatures. Most notably, high amounts of H were observed to desorb from the…

research product

Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors

In this paper, we report ALD deposition of silicon dioxide using either thermal or plasma enhanced atomic layer deposition (PEALD). Several aminosilanes with differing structures and reactivity were used as silicon precursors in R&D single wafer ALD tools. One of the precursors was also tested on pilot scale batch ALD using O3 as oxidant and with substrates measuring 150 × 400 mm. The SiO2 film deposition rate was greatly dependent on the precursors used, highest values being 1.5-2.0 Å/cycle at 30-200°C for one precursor with an O2 plasma. According to time-of-flight-elastic recoil detection analysis measurements carbon and nitrogen impurities were relatively low, but hydrogen content i…

research product

Mechanical and optical properties of as-grown and thermally annealed titanium dioxide from titanium tetrachloride and water by atomic layer deposition

Funding Information: This work was carried out within the MECHALD project funded by Business Finland (Tekes) and is linked to the Finnish Centers of Excellence in Atomic Layer Deposition (ref. 251220) and Nuclear and Accelerator Based Physics (refs. 213503 and 251353) of the Academy of Finland. Funding Information: This work was carried out within the MECHALD project funded by Business Finland (Tekes) and is linked to the Finnish Centers of Excellence in Atomic Layer Deposition (ref. 251220 ) and Nuclear and Accelerator Based Physics (refs. 213503 and 251353 ) of the Academy of Finland. Publisher Copyright: © 2021 The use of thin-films made by atomic layer deposition (ALD) is increasing in …

research product

Deterministic Modification of CVD Grown Monolayer MoS2 with Optical Pulses

| openaire: EC/H2020/820423/EU//S2QUIP | openaire: EC/H2020/834742/EU//ATOP Transition metal dichalcogenide monolayers have demonstrated a number of exquisite optical and electrical properties. Here, the authors report the optical modification of topographical and optical properties of monolayer MoS2 with femtosecond pulses under an inert atmosphere. A formation of three-dimensional structures on monolayer MoS2 with tunable height up to ≈20 nm is demonstrated. In contrast to unmodified monolayer MoS2, these optically modified structures show significantly different optical properties, such as lower photoluminescence intensity and longer fluorescence lifetime. The results suggest a novel way…

research product

Nanotribological, nanomechanical and interfacial characterization of atomic layer deposited TiO2 on a silicon substrate

Abstract For every coating it is critical that the coatings are sufficiently durable to withstand practical applications and that the films adhere well enough to the substrate. In this paper the nanotribological, nanomechanical and interfacial properties of 15–100 nm thick atomic layer deposited (ALD) TiO 2 coatings deposited at 110–300 °C were studied using a novel combination of nanoscratch and scanning nanowear testing. Thin film wear increased linearly with increasing scanning nanowear load. The film deposited at 300 °C was up to 58±11 %-points more wear-resistant compared to the films deposited at lower temperatures due to higher hardness and crystallinity of the film. Amorphous/nanocr…

research product

Atomic layer deposition of AlN from AlCl3 using NH3 and Ar/NH3 plasma

The atomic layer deposition (ALD) of AlN from AlCl3 was investigated using a thermal process with NH3 and a plasma-enhanced (PE)ALD process with Ar/NH3 plasma. The growth was limited in the thermal process by the low reactivity of NH3, and impractically long pulses were required to reach saturation. Despite the plasma activation, the growth per cycle in the PEALD process was lower than that in the thermal process (0.4 Å vs 0.7 Å). However, the plasma process resulted in a lower concentration of impurities in the films compared to the thermal process. Both the thermal and plasma processes yielded crystalline films; however, the degree of crystallinity was higher in the plasma process. The fi…

research product

Properties of AlN grown by plasma enhanced atomic layer deposition

Abstract The influence of growth parameters on the properties of AlN films fabricated by plasma-enhanced atomic layer deposition using trimethylaluminum and ammonia precursors was investigated. The atomic concentrations, refractive index, mass density, crystallinity and surface roughness were studied from the films grown in the temperature range of 100–300 °C with plasma discharge times between 2.5 and 30 s. The AlN films were shown to be hydrogen rich having H concentrations in the range of 13–27 at.% with inverse dependence on the growth temperature. The carbon and oxygen concentrations in the films were less than 2.6% and 0.2%, respectively. The refractive index and mass density of the f…

research product

Fabrication-friendly polarization-sensitive plasmonic grating for optimal surface-enhanced Raman spectroscopy

Plasmonic nanostructures are widely utilized in surface-enhanced Raman spectroscopy (SERS) from ultraviolet to near-infrared applications. Periodic nanoplasmonic systems such as plasmonic gratings are of great interest as SERS-active substrates due to their strong polarization dependence and ease of fabrication. In this work, we modelled a silver grating that manifests a subradiant plasmonic resonance as a dip in its reflectivity with significant near-field enhancement only for transverse-magnetic (TM) polarization of light. We investigated the role of its fill factor, commonly defined as a ratio between the width of the grating groove and the grating period, on the SERS enhancement. We des…

research product

Photo-induced electron transfer at nanostructured semiconductor–zinc porphyrin interface

Abstract Electron transfer at metal oxide–organic dye interface on ZnO nanorod (ZnOr) templates was studied by femtosecond absorption spectroscopy method. Further confirmation of the electron transfer was obtained from photoelectrical studies. The fastest electron transfer from zinc porphyrin (ZnP) to semiconductor was observed for ZnOr modified by a 5 nm layer of TiO2 (

research product

Aluminum oxide/titanium dioxide nanolaminates grown by atomic layer deposition: Growth and mechanical properties

Atomic layer deposition (ALD) is based on self-limiting surface reactions. This and cyclic process enable the growth of conformal thin films with precise thickness control and sharp interfaces. A multilayered thin film, which is nanolaminate, can be grown using ALD with tuneable electrical and optical properties to be exploited, for example, in the microelectromechanical systems. In this work, the tunability of the residual stress, adhesion, and mechanical properties of the ALD nanolaminates composed of aluminum oxide (Al2O3) and titanium dioxide (TiO2) films on silicon were explored as a function of growth temperature (110-300 C), film thickness (20-300 nm), bilayer thickness (0.1-100 nm),…

research product

Thermomechanical properties of aluminum oxide thin films made by atomic layer deposition

Funding Information: This work was carried out within the MECHALD project funded by Business Finland and is linked to the Finnish Centers of Excellence in Atomic Layer Deposition (Ref. No. 251220) and Nuclear and Accelerator Based Physics (Ref Nos. 213503 and 251353) of the Academy of Finland. Publisher Copyright: © 2022 Author(s). In microelectromechanical system devices, thin films experience thermal processing at temperatures some cases exceeding the growth or deposition temperature of the film. In the case of the thin film grown by atomic layer deposition (ALD) at relatively low temperatures, post-ALD thermal processing or high device operation temperature might cause performance issues…

research product

Tribological properties of thin films made by atomic layer deposition sliding against silicon

Interfacial phenomena, such as adhesion, friction, and wear, can dominate the performance and reliability of microelectromechanical (MEMS) devices. Here, thin films made by atomic layer deposition (ALD) were tested for their tribological properties. Tribological tests were carried out with silicon counterpart sliding against ALD thin films in order to simulate the contacts occurring in the MEMS devices. The counterpart was sliding in a linear reciprocating motion against the ALD films with the total sliding distances of 5 and 20 m. Al2O3 and TiO2 coatings with different deposition temperatures were investigated in addition to Al2O3-TiO2-nanolaminate, TiN, NbN, TiAlCN, a-C:H [diamondlike car…

research product

Optical Modification of Monolayer MoS 2 : Deterministic Modification of CVD Grown Monolayer MoS 2 with Optical Pulses (Adv. Mater. Interfaces 10/2021)

research product

Aluminum oxide from trimethylaluminum and water by atomic layer deposition:The temperature dependence of residual stress, elastic modulus, hardness and adhesion

Use of atomic layer deposition (ALD) in microelectromechanical systems (MEMS) has increased as ALD enables conformal growth on 3-dimensional structures at relatively low temperatures. For MEMS device design and fabrication, the understanding of stress and mechanical properties such as elastic modulus, hardness and adhesion of thin film is crucial. In this work a comprehensive characterization of the stress, elastic modulus, hardness and adhesion of ALD aluminum oxide (Al2O3) films grown at 110-300 C from trimethylaluminum and water is presented. Film stress was analyzed by wafer curvature measurements, elastic modulus by nanoindentation and surface-acoustic wave measurements, hardness by na…

research product

Atomic layer deposition of AlN from AlCl3 using NH3 and Ar/NH3 plasma

The atomic layer deposition (ALD) of AlN from AlCl3 was investigated using a thermal process with NH3 and a plasma-enhanced (PE)ALD process with Ar/NH3 plasma. The growth was limited in the thermal process by the low reactivity of NH3, and impractically long pulses were required to reach saturation. Despite the plasma activation, the growth per cycle in the PEALD process was lower than that in the thermal process (0.4A ° vs 0.7A ° ). However, the plasma process resulted in a lower concentration of impurities in the films compared to the thermal process. Both the thermal and plasma processes yielded crystalline films; however, the degree of crystallinity was higher in the plasma process. The…

research product

Review article: recommended reading list of early publications on atomic layer deposition - outcome of the "virtual Project on the History of ALD"

Atomic layer deposition (ALD), a gas-phase thin film deposition technique based on repeated, self-terminating gas-solid reactions, has become the method of choice in semiconductor manufacturing and many other technological areas for depositing thin conformal inorganic material layers for various applications. ALD has been discovered and developed independently, at least twice, under different names: atomic layer epitaxy (ALE) and molecular layering. ALE, dating back to 1974 in Finland, has been commonly known as the origin of ALD, while work done since the 1960s in the Soviet Union under the name "molecular layering" (and sometimes other names) has remained much less known. The virtual proj…

research product