0000000000826675

AUTHOR

Ondřej Jurček

showing 43 related works from this author

Solution and solid-state studies on the halide binding affinity of perfluorophenyl-armed uranyl–salophen receptors enhanced by anion–π Interactions

2016

The enhancement of the binding between halide anions and a Lewis acidic uranyl-salophen receptor has been achieved by the introduction of pendant electron- deficient arene units into the receptor skeleton. The association and the occurrence of the elusive anion-p interaction with halide anions (as tetrabutylammonium salts) have been demonstrated in solution and in the solid state, providing unambiguous evidence on the interplay of the concerted interactions responsible for the anion binding.

anion–π interactions; halides; host–guest systems; lewis acid–base interactions; uranyl–salophen; chemistry (all)Solid-stateHalide010402 general chemistry01 natural sciencesCatalysisIonUranyl salophenPolymer chemistryOrganic chemistryReceptorAnion bindingta116Uranyl-salphenlewis acid–base interactionsanion–π interactionsuranyl–salophen010405 organic chemistryChemistryOrganic Chemistryhost–guest systemsGeneral Chemistryinteractions0104 chemical sciencesuranyl-salophen receptorshalideschemistry (all)halide recognitionanions
researchProduct

Crystallization, spectral, crystallographical, and thermoanalytical studies of succinobucol polymorphism.

2011

Four different polymorphs, A, C, D, and E, of succinobucol were isolated and characterized by means of solid-state nuclear magnetic resonance spectroscopy, single crystal and powder X-ray diffraction, differential scanning calorimetry, thermogravimetry, and attenuated total reflection–infrared spectroscopy. From a number of experiments, the same polymorphs (C, D, and E) and an equilibrium phase mixture B consisting of polymorphs C and D were repeatedly gained using different solvents or their mixtures. Although polymorph A was obtained directly from recrystallization only on few occasions, polymorphs C, D, and E proved to be metastable kinetic polymorphs, which slowly transform to a thermod…

Models MolecularMagnetic Resonance SpectroscopyCalorimetry Differential ScanningSpectrophotometry InfraredChemistryPharmaceutical ScienceNuclear magnetic resonance spectroscopyCrystallography X-Raylaw.inventionThermogravimetryCrystallographyDifferential scanning calorimetryProbucolPolymorphism (materials science)Solid-state nuclear magnetic resonancelawThermogravimetryCrystallizationCrystallizationta116Single crystalPowder diffractionPowder DiffractionJournal of pharmaceutical sciences
researchProduct

Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia.

2016

Transmembrane anion transporters (anionophores) have potential for new modes of biological activity, including therapeutic applications. In particular they might replace the activity of defective anion channels in conditions such as cystic fibrosis. However, data on the biological effects of anionophores are scarce, and it remains uncertain whether such molecules are fundamentally toxic. Here, we report a biological study of an extensive series of powerful anion carriers. Fifteen anionophores were assayed in single cells by monitoring anion transport in real time through fluorescence emission from halide-sensitive yellow fluorescent protein. A bis-(p-nitrophenyl)ureidodecalin shows especial…

Yellow fluorescent proteinpotencyGeneral Chemical Engineeringsynthetic anion carriersCystic Fibrosis Transmembrane Conductance Regulator01 natural sciencesMadin Darby Canine Kidney CellsCell membranedeliverabilityta116Drug CarriersbiologyMolecular StructureChemistryBiological activitypersistenceCystic fibrosis transmembrane conductance regulatorTransmembrane proteinanionophoresmedicine.anatomical_structureBiochemistryPhosphatidylcholinesSteroidsChlorineAnionsCell SurvivalNaphthalenesta3111010402 general chemistryDogsBacterial ProteinsCyclohexanesmedicineAnimalsHumansIon transporterCell ProliferationIon Transport010405 organic chemistryCell MembranetoxicityTransporterEpithelial CellsHydrogen BondingGeneral ChemistryRats Inbred F3440104 chemical sciencesElectrophysiological PhenomenaLuminescent ProteinsMicroscopy FluorescenceCell cultureDrug Designbiology.proteinHeLa CellsNature chemistry
researchProduct

Superchiral Pd 3 L 6 Coordination Complex and Its Reversible Structural Conversion into Pd 3 L 3 Cl 6 Metallocycles

2015

Large, non-symmetrical, inherently chiral bispyridyl ligand L derived from natural ursodeoxycholic bile acid was used for square-planar coordination of tetravalent Pd(II) , yielding the cationic single enantiomer of superchiral coordination complex 1 Pd3 L6 containing 60 well-defined chiral centers in its flower-like structure. Complex 1 can readily be transformed by addition of chloride into a smaller enantiomerically pure cyclic trimer 2 Pd3 L3 Cl6 containing 30 chiral centers. This transformation is reversible and can be restored by the addition of silver cations. Furthermore, a mixture of two constitutional isomers of trimer, 2 and 2', and dimer, 3 and 3', can be obtained directly from …

chemistry.chemical_classificationCircular dichroism010405 organic chemistryChemistryLigandStereochemistrySupramolecular chemistryTrimerGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesCoordination complexCrystallographyStructural isomerEnantiomerChirality (chemistry)Angewandte Chemie International Edition
researchProduct

Preparation and preliminary biological screening of cholic acid–juvenoid conjugates

2020

Abstract Steroidal compounds have been utilized as carriers and for modification of physico-chemical properties of model biologically active secondary alcohols – juvenoids. Juvenoids are juvenile hormone analogues – environmentally safe insecticides, possessing significant biological activity towards different arthropods groups in focus on insect pest species. Structure modification of juvenoids plays important role to control the rate of liberation and decomposition of juvenoid in digestive system and can also play important role in the mode of action towards selected insect. This study presents an approach to the synthesis of steroidal monomers and dimers carrying one and two molecules of…

Biological testMaleSarcophagaClinical BiochemistryCholic AcidBiochemistrychemistry.chemical_compoundEndocrinologyAnimalsPesticidesMolecular BiologyCell ProliferationPharmacologyStructure modificationbiologyDipteraReproductionOrganic ChemistryCholic acidBiological activityEpithelial Cellsbiology.organism_classificationJuvenile HormonesBiochemistrychemistryLarvaJuvenile hormoneLiberationFemaleDimerizationConjugate
researchProduct

Sterically geared tris-thioureas; transmembrane chloride transporters with unusual activity and accessibility

2015

Tris-N-arylthioureas derived in one step from 1,3,5-tris(aminomethyl)-2,4,6-triethylbenzene are remarkably effective anion carriers. With optimised aryl substituents their activities come close to the best currently known, suggesting that they might find use as readily available standards in anion transport research.

AnionsModels MolecularTrisSteric effectsCrystallography X-RayChlorideCatalysisPhysico-chimie généralechemistry.chemical_compoundChloridesMaterials ChemistrymedicineChimieMoleculeOrganic chemistryta116Ion transporterIon TransportMolecular StructureChemistryArylThioureatransmembrane anion carriersMetals and Alloystransmembrane transportersGeneral ChemistryCombinatorial chemistryTransmembrane proteinSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChimie organiqueThioureaCeramics and Compositesmedicine.drugChemical Communications
researchProduct

Hexagonal Microparticles from Hierarchical Self-Organization of Chiral Trigonal Pd3L6 Macrotetracycles

2021

Construction of structurally complex architectures using inherently chiral, asymmetric, or multi-heterotopic ligands is a major challenge in metallosupramolecular chemistry. Moreover, the hierarchical self-organization of such complexes is unique. Here, we introduce a water-soluble, facially amphiphilic, amphoteric, chiral, asymmetric, and hetero-tritopic ligand derived from natural bile acid, ursodeoxycholic acid. We show that via the supramolecular transmetalation reaction, using nitrates of Cu(II) or Fe(III), and subsequently Pd(II), a superchiral Pd3L6 complex can be obtained. Even though several possible constitutional isomers of Pd3L6 could be formed, because of the ligand asymmetry a…

particlesurfactantSupramolecular chemistryGeneral Physics and Astronomychemistry.chemical_elementchirality02 engineering and technology010402 general chemistry01 natural sciences114 Physical sciencessupramolecular chemistryTransmetalationPhysico-chimie généraleChimie des colloïdesAmphiphileStructural isomersupramolekulaarinen kemiaChimiebile acidGeneral Materials ScienceLigandChemistryGeneral Engineeringheterotopic ligandChimie des surfaces et des interfacesGeneral Chemistrykompleksiyhdisteetself-assembly021001 nanoscience & nanotechnologypalladiumself-organization0104 chemical sciences3. Good healthmikrorakenteetCrystallographyChimie organiqueGeneral EnergytransmetalationSelf-assembly0210 nano-technologyChirality (chemistry)Palladium
researchProduct

Very strong −N–X+⋯−O–N+ halogen bonds

2016

A new (-)N-X(+)(-)O-N(+) paradigm for halogen bonding is established by using an oxygen atom as an unusual halogen bond acceptor. The strategy yielded extremely strong halogen bonded complexes with very high association constants characterized in either CDCl3 or acetone-d6 solution by (1)H NMR titrations and in the solid-state by single crystal X-ray analysis. The obtained halogen bond interactions, RXB, in the solid-state are found to be in the order of strong hydrogen bonds, viz. RXB ≈ RHB.

halogen bondsNanotechnologychemistry010402 general chemistry01 natural sciencesCatalysisoxygen atomMaterials Chemistryta116Halogen bond010405 organic chemistryChemistryHydrogen bondMetals and AlloysGeneral ChemistryAcceptor0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyOxygen atomHalogenCeramics and CompositesProton NMRTitrationSingle crystalChemical Communications
researchProduct

Anion Recognition by a Bioactive Diureidodecalin Anionophore: Solid-State, Solution, and Computational Studies

2018

Recent work has identified a bis-(p-nitrophenyl)ureidodecalin anion carrier as a promising candidate for biomedical applications, showing good activity for chloride transport in cells yet almost no cytotoxicity. To underpin further development of this and related compounds, a detailed structural and binding investigation is reported. Crystal structures of the transporter as five solvates confirm the diaxial positioning of urea groups while revealing a degree of conformational flexibility. Structures of complexes with Cl−, Br−, NO3 −, SO4 2− and AcO−, supported by computational studies, show how the binding site can adapt to accommodate these anions. 1H NMR binding studies revealed exception…

Anionsinorganic chemicalsMagnetic Resonance SpectroscopyAnion ReceptorsMolecular Conformationreceptorsanion recognitionCrystal structureCrystallography X-Ray010402 general chemistry01 natural sciencesChlorideCatalysisNitrophenolsComputers MolecularPhysico-chimie généraleChloridesChimie des colloïdesTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYmedicineUreaChimieMoleculehost–guest interactionsBinding siteta116Binding SitesFull Paper010405 organic chemistryChemistryHydrogen bondOrganic ChemistryChimie des surfaces et des interfacesGeneral ChemistryFull PapersAffinities0104 chemical sciences3. Good healthChimie organiqueCrystallographyhydrogen bondssolid-state structuresProton NMRSelectivityanionsmedicine.drugChemistry - A European Journal
researchProduct

Spontaneous Resolution of an Electron‐Deficient Tetrahedral Fe4L4cage

2015

A highly electron-deficient C3-symmetric tris(bipyridyl) ligand was prepared in four steps and used for the coordination of Fe(OTf)2, thereby resulting in the homochiral assembly of a new family of robust tetrahedral M4L4 cages. This homochiral T-symmetric cage containing a relatively large cavity of 330 A(3) is capable of encapsulating an anionic guest, as was determined by mass spectrometry, (19)F NMR spectroscopy, and finally shown from its crystal structure. Moreover, crystallization of the cage from CH3CN led to crystals containing both (ΔΔΔΔ and ΛΛΛΛ) enantiomers, while crystallization from CH3 OH resulted in crystals containing only the right-handed (ΔΔΔΔ) cage. The difference in the…

crystallization010405 organic chemistryChemistryLigandelectron-deficient tetrahedral Fe4L4Supramolecular chemistryGeneral ChemistryNuclear magnetic resonance spectroscopyCrystal structureGeneral Medicine010402 general chemistry01 natural sciencesCatalysis0104 chemical scienceslaw.inventionCrystalCrystallographylawX-ray crystallographyCrystallizationChirality (chemistry)ta116Angewandte Chemie
researchProduct

Heads or Tails? Sandwich-Type Metallo Complexes of Hexakis(2,3-di-O-methyl)-α-cyclodextrin

2020

Native and synthetically modified cyclodextrins (CDs) are useful building blocks in the construction of large coordination complexes and porous materials with various applications. Sandwich-type co...

chemistry.chemical_classificationMaterials scienceCyclodextrin010405 organic chemistryGeneral ChemistryCrystal structure010402 general chemistryCondensed Matter Physics01 natural sciences3. Good health0104 chemical sciencesSandwich typeCrystallographychemistryX-ray crystallographyGeneral Materials SciencePorous mediumCrystal Growth & Design
researchProduct

Antioxidative succinobucol–sterol conjugates: Crystal structures and pseudosymmetry in the crystals

2012

Abstract An extensive study to attach succinobucol to sterols has provided conjugates which comprise two pharmaceutically important compounds into one entity where the components are expected to have a synergistic effect. The motivation to design these novel conjugates was the need to broaden the armamentarium of current agents used in the treatment of atherosclerotic diseases and type 2 diabetes. In desire for detailed information of these compounds in solid state, which also have an influence to their physiological activity, systematic crystallization experiments were performed and as a result, X-ray quality single crystals were obtained from four succinobucol–sterol conjugates. All of th…

ChemistryStereochemistrymedicine.medical_treatmentPhytosterolOrganic ChemistryCrystal structureSterolAnalytical Chemistrylaw.inventionSteroidInorganic ChemistrylawmedicineMoleculeCrystallizationSUCCINOBUCOLta116SpectroscopyConjugateJournal of Molecular Structure
researchProduct

Succinobucol’s New Coat — Conjugation with Steroids to Alter Its Drug Effect and Bioavailability

2011

Synthesis, detailed structural characterization (X-ray, NMR, MS, IR, elemental analysis), and studies of toxicity, antioxidant activity and bioavailability of unique potent anti-atherosclerotic succinobucol-steroid conjugates are reported. The conjugates consist of, on one side, the therapeutically important drug succinobucol ([4-{2,6-di-tert-butyl-4-[(1-{[3-tert-butyl-4-hydroxy-5-(propan-2-yl)phenyl]sulfanyl}ethyl)sulfanyl]phenoxy}-4-oxo-butanoic acid]) possessing an antioxidant and anti-inflammatory activity, and on the other side, plant stanol/sterols (stigmastanol, β-sitosterol and stigmasterol) possessing an ability to lower the blood cholesterol level. A cholesterol-succinobucol prodr…

AntioxidantFree RadicalsStereochemistrymedicine.medical_treatmentStatic ElectricityAnti-Inflammatory AgentsBiological AvailabilityPharmaceutical ScienceprobucolArticleAntioxidantsAnalytical Chemistrylcsh:QD241-441Micechemistry.chemical_compoundPicrateslcsh:Organic chemistrySulfanylDrug DiscoverymedicineAnimalsHumansPhysical and Theoretical Chemistrysuccinobucol; phytosterol; atherosclerosis; cholesterol; probucolta317phytosterolStigmastanolClinical Trials as TopicMice Inbred BALB CMolecular StructurePhytosterolBiphenyl CompoundsOrganic Chemistrycholesterol3T3 CellsFibroblastsProdrugAscorbic acidBioavailabilityBiphenyl compoundchemistryChemistry (miscellaneous)Molecular MedicineSteroidsatherosclerosissuccinobucolMolecules; Volume 16; Issue 11; Pages: 9404-9420
researchProduct

Heads or Tails? Sandwich-Type Metallocomplexes of Hexakis(2,3-di-O-methyl)-α-cyclodextrin

2020

Native and synthetically modified cyclodextrins (CDs) are useful building blocks in construction of large coordination complexes and porous materials with various applications. Sandwich-type complexes (STCs) are one of the important groups in this area. Usually, coordination of secondary hydroxyls or the “head” portal of native CD molecules to a notional multinuclear ring of metal cations leads to formation of head-to-head STCs. Our study introduces a new CD-ligand, hexakis(2,3-di-O-methyl)-α-cyclodextrin, which enables formation of intriguing head-to-head, but also novel tail-to-tail STCs. Homometallic silver-based head-to-head STCs, AgPF6-STC and AgClO4-STC, were obtained by coordination …

metal-organic materialrubidiumcyclodextrinsilversandwich-type complexX-ray crystallography
researchProduct

CCDC 1426137: Experimental Crystal Structure Determination

2016

Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A

Space GroupCrystallographyCrystal SystemCrystal Structure1-Iodopyrrolidine-25-dione 2-methylpyridine 1-oxide hemihydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1426141: Experimental Crystal Structure Determination

2016

Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A

Space GroupCrystallography2-Iodo-12-benzothiazol-3(2H)-one 11-dioxide 4-phenylpyridine 1-oxideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1953708: Experimental Crystal Structure Determination

2021

Related Article: Ondřej Jurček, Nonappa, Elina Kalenius, Pia Jurček, Juha M. Linnanto, Rakesh Puttreddy, Hennie Valkenier, Nikolay Houbenov, Michal Babiak, Miroslav Peterek, Anthony P. Davis, Radek Marek, Kari Rissanen|2021|Cell Reports Physical Science|2|100303|doi:10.1016/j.xcrp.2020.100303

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters37-bis{[(pyridin-4-yl)carbamoyl]oxy}cholan-24-oic acid acetonitrile ethanol solvate hemihydrateExperimental 3D Coordinates
researchProduct

CCDC 1420195: Experimental Crystal Structure Determination

2015

Related Article: Hongyu Li, Hennie Valkenier, Luke W. Judd, Peter R. Brotherhood, Sabir Hussain, James A. Cooper, Ondřej Jurček, Hazel A. Sparkes, David N. Sheppard, Anthony P. Davis|2016|Nature Chemistry|8|24|doi:10.1038/nchem.2384

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersNNNN-tetramethylaminium chloride ethyl 27-bis(((4-nitrophenyl)carbamoyl)amino)octahydronaphthalene-4a(2H)-carboxylateExperimental 3D Coordinates
researchProduct

CCDC 1818063: Experimental Crystal Structure Determination

2018

Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537

Space GroupCrystallographyethyl 27-bis{[(4-nitrophenyl)carbamoyl]amino}octahydronaphthalene-4a(2H)-carboxylate monohydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1407136: Experimental Crystal Structure Determination

2015

Related Article: Pia Bonakdarzadeh, Fangfang Pan, Elina Kalenius, Ondřej Jurček, Kari Rissanen|2015|Angew.Chem.,Int.Ed.|54|14890|doi:10.1002/anie.201507295

Space GroupCrystallographytetrakis(mu3-55'5''-((246-trifluorobenzene-135-triyl)triethyne-21-diyl)tris(22'-bipyridine))-tetra-iron octakis(trifluoromethanesulfonate) unknown solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1899328: Experimental Crystal Structure Determination

2020

Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-hexakis(23-O-methyl)-alpha-cyclodextrin)-dodecakis(mu-fluoro)-bis(mu-methanol)-hexakis(methanol)-hexa-aqua-dodeca-rubidium unknown solvate]Experimental 3D Coordinates
researchProduct

CCDC 1426136: Experimental Crystal Structure Determination

2016

Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-Iodopyrrolidine-25-dione pyridine 1-oxideExperimental 3D Coordinates
researchProduct

CCDC 1411525: Experimental Crystal Structure Determination

2015

Related Article: Hennie Valkenier, Christopher M. Dias, Kathryn L. Porter Goff, Ondřej Jurček, Rakesh Puttreddy, Kari Rissanen, Anthony P. Davis|2015|Chem.Commun.|51|14235|doi:10.1039/C5CC05737J

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersTetramethylammonium chloride 11'1''-((246-triethylbenzene-135-triyl)tris(methylene))tris(3-(35-bis(trifluoromethyl)phenyl)(thiourea)) monohydrateExperimental 3D Coordinates
researchProduct

CCDC 1427937: Experimental Crystal Structure Determination

2017

Related Article: Luca Leoni, Rakesh Puttreddy, Ondřej Jurček, Andrea Mele, Ilaria Giannicchi, Francesco Yafteh Mihan, Kari Rissanen, Antonella Dalla Cort|2016|Chem.-Eur.J.|22|18714|doi:10.1002/chem.201604313

Space GroupCrystallographytetrabutylammonium bromo-(dioxo)-(2'3'4'5'6'-pentafluoro-3-(((2-((2-(hydroxy)benzylidene)amino)phenyl)imino)methyl)biphenyl-2-olato)-uraniumCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1426143: Experimental Crystal Structure Determination

2016

Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters12-Benzothiazol-3(2H)-one 11-dioxide 2-methylpyridine 1-oxideExperimental 3D Coordinates
researchProduct

CCDC 1817835: Experimental Crystal Structure Determination

2018

Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(tetramethylammonium) bis(ethyl 27-bis{[(4-nitrophenyl)carbamoyl]amino}octahydronaphthalene-4a(2H)-carboxylate) sulfate dihydrateExperimental 3D Coordinates
researchProduct

CCDC 1426139: Experimental Crystal Structure Determination

2016

Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-Iodo-12-benzothiazol-3(2H)-one 11-dioxide pyridine 1-oxideExperimental 3D Coordinates
researchProduct

CCDC 1817833: Experimental Crystal Structure Determination

2018

Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537

Space GroupCrystallographyCrystal SystemCrystal Structuretetramethylammonium ethyl 27-bis{[(4-nitrophenyl)carbamoyl]amino}octahydronaphthalene-4a(2H)-carboxylate acetate hemihydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1426138: Experimental Crystal Structure Determination

2016

Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-Iodopyrrolidine-25-dione 4-phenylpyridine 1-oxideExperimental 3D Coordinates
researchProduct

CCDC 1817831: Experimental Crystal Structure Determination

2018

Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537

ethyl 27-bis{[(4-nitrophenyl)carbamoyl]amino}octahydronaphthalene-4a(2H)-carboxylate tetrahydrofuran solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1817830: Experimental Crystal Structure Determination

2018

Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatesethyl 27-bis{[(4-nitrophenyl)carbamoyl]amino}octahydronaphthalene-4a(2H)-carboxylate acetone solvate
researchProduct

CCDC 1959539: Experimental Crystal Structure Determination

2020

Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdibromo-(mu-hexakis(23-O-methyl)-alpha-cyclodextrin)-zinc diethyl ether methanol unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1427936: Experimental Crystal Structure Determination

2017

Related Article: Luca Leoni, Rakesh Puttreddy, Ondřej Jurček, Andrea Mele, Ilaria Giannicchi, Francesco Yafteh Mihan, Kari Rissanen, Antonella Dalla Cort|2016|Chem.-Eur.J.|22|18714|doi:10.1002/chem.201604313

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrabutylammonium chloro-(dioxo)-(2'3'4'5'6'-pentafluoro-3-(((2-((2-oxybenzylidene)amino)phenyl)imino)methyl)biphenyl-2-olato)-uraniumExperimental 3D Coordinates
researchProduct

CCDC 1899329: Experimental Crystal Structure Determination

2020

Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532

bis(mu-hexakis(23-di-O-methyl)-alpha-cyclodextrin)-hexakis(mu-aqua)-nona-silver nona-hexafluorophosphate unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1407137: Experimental Crystal Structure Determination

2015

Related Article: Pia Bonakdarzadeh, Fangfang Pan, Elina Kalenius, Ondřej Jurček, Kari Rissanen|2015|Angew.Chem.,Int.Ed.|54|14890|doi:10.1002/anie.201507295

Space GroupCrystallographytetrakis(mu3-55'5''-((246-trifluorobenzene-135-triyl)triethyne-21-diyl)tris(22'-bipyridine))-tetra-iron octakis(trifluoromethanesulfonate) unknown solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1817834: Experimental Crystal Structure Determination

2018

Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetramethylammonium ethyl 27-bis{[(4-nitrophenyl)carbamoyl]amino}octahydronaphthalene-4a(2H)-carboxylate nitrateExperimental 3D Coordinates
researchProduct

CCDC 1899330: Experimental Crystal Structure Determination

2020

Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532

Space GroupCrystallographydodeca-silver dodecakis(perchlorate) bis((313233343536373839404142-dodecamethoxy-24791214171922242729-dodecaoxaheptacyclo[26.2.2.236.2811.21316.21821.22326]dotetracontane-51015202530-hexayl)hexamethanol) hexacosahydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1899331: Experimental Crystal Structure Determination

2020

Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532

catena-[triaqua-(mu-hexakis(23-O-methyl)-alpha-cyclodextrin)-silver tetrafluoroborate unknown solvate tetrahydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1426140: Experimental Crystal Structure Determination

2016

Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A

2-Iodo-12-benzothiazol-3(2H)-one 11-dioxide 2-methylpyridine 1-oxideSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1426142: Experimental Crystal Structure Determination

2016

Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters12-Benzothiazol-3(2H)-one 11-dioxide pyridine 1-oxideExperimental 3D Coordinates
researchProduct

CCDC 1817832: Experimental Crystal Structure Determination

2018

Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537

Space GroupCrystallographyethyl 27-bis{[(4-nitrophenyl)carbamoyl]amino}octahydronaphthalene-4a(2H)-carboxylate dimethyl sulfoxide solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1586249: Experimental Crystal Structure Determination

2018

Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537

Space GroupCrystallographyCrystal SystemCrystal Structureethyl 27-bis{[(4-nitrophenyl)carbamoyl]amino}octahydronaphthalene-4a(2H)-carboxylate methanol solvate hydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1586251: Experimental Crystal Structure Determination

2018

Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatestetramethylammonium bromide ethyl 27-bis{[(4-nitrophenyl)carbamoyl]amino}octahydronaphthalene-4a(2H)-carboxylate
researchProduct