0000000000827540
AUTHOR
David Vandroux
A multi-step mechanism and integrity of titanate nanoribbons.
A one-step hydrothermal treatment of TiO2 powders under strongly basic conditions has been used to synthesize titanate nanoribbons. The nanoparticles were thoroughly characterized using several methods including transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectrometry (XPS) to determine their morphological, structural and chemical characteristics. The influence of the nature and size of the TiO2 precursor and of the reaction duration on the formation of the nanoribbons was investigated. The conditions required to obtain only titanate nanoribbons with a width ranging from 100 to 200 nm and several tens of micrometers in length w…
A constitutive BCL2 down-regulation aggravates the phenotype of PKD1-mutant-induced polycystic kidney disease
IF 5.340; International audience; The main identified function of BCL2 protein is to prevent cell death by apoptosis. Mice knock-out for Bcl2 demonstrate growth retardation, severe polycystic kidney disease (PKD), gray hair and lymphopenia, and die prematurely after birth. Here, we report a 40-year-old male referred to for abdominal and thoracic aortic dissection with associated aortic root aneurysm, PKD, lymphocytopenia with a history of T cell lymphoblastic lymphoma, white hair since the age of 20, and learning difficulties. PKD, which was also detected in the father and sister, was related to an inherited PKD1 mutation. The combination of PKD with gray hair and lymphocytopenia was also r…
Synthesis of Titanate Nanotubes Directly Coated with USPIO in Hydrothermal Conditions: A New Detectable Nanocarrier
International audience; Abstract: For the first time, titanate nanotubes (TiONts) coated with USPIO (ultrasmall superparamagnetic iron oxide) without polymer functionalization and directly obtained during TiONts formation is reported. The coating of these tubes was performed directly during the TiONts hydrothermal synthesis. After this treatment, in strongly basic conditions, USPIO particles kept their structure and magnetic properties while their size distribution slightly increased. By coupling zeta-potential measurements and TEM observations at different pH it appeared that interactions between nanotubes and USPIO were not electrostatic. This study presents the new design of a titanate n…
Multisite field potential recordings and analysis of the impulse propagation pattern in cardiac cells culture
To provide further insights into the impulse propagation between cardiac myocytes, we performed multiparametric studies of excitation spread with cellular resolution in confluent monolayers of cultured cardiomyocytes (CM). Simultaneous paired intracellular recordings of action potentials in two individual CM revealed slight periodic spontaneous advances/delays in the interspike time lag. Multisite field potential recordings performed with microelectrode arrays (MEA) confirmed random and iterative cycle-to-cycle changes in the direction of excitation spread. These local spontaneous variations in the cardiac impulse propagation pathways may be a safety process protecting against microscopical…
Downregulation and Nuclear Relocation of MLP During the Progression of Right Ventricular Hypertrophy Induced by Chronic Pressure Overload
Abstract The cardiac LIM domain protein MLP plays a crucial role in the architecture and mechanical function of cardiac myocytes. Mice lacking the MLP gene develop cardiac hypertrophy, dilated cardiopathy and heart failure. We investigated whether downregulation of MLP is induced by pressure overload and contributes to the physiopathology of cardiac hypertrophy and failure. We studied this mechanism in rat right ventricles submitted to pulmonary arterial hypertension, because it is known that this ventricle is very vulnerable to the deleterious effects of pressure overload. During the progression of cardiac hypertrophy to failure over a 31 days period there was a dramatic decrease by 50% of…
Procollagen C-Proteinase Enhancer 1 (PCPE-1) is a marker of myocardial fibrosis and impaired cardiac function in a murine model of pressure overload
Abstract(1)AimsProcollagen C-proteinase enhancer 1 (PCPE-1) is an extracellular matrix protein and a major regulator of fibrillar collagen biosynthesis. Previous work has shown that its abundance is often increased in the context of tissue repair and fibrosis. The present study was designed to evaluate its potential as a biomarker of myocardial interstitial fibrosis (MIF), a well-established pathogenic pathway leading to heart failure.(2)Methods and ResultsCardiac fibrosis was induced in rats using an optimized model of chronic pressure overload triggered by angiotensin II and Nω-nitro-L-arginine methyl ester (L-NAME). All treated animals suffered from heart hypertrophy and the increase in …
Controlled reperfusion after hypothermic heart preservation inhibits mitochondrial permeability transition-pore opening and enhances functional recovery.
We investigated whether low-pressure reperfusion may attenuate postischemic contractile dysfunction, limits necrosis and apoptosis after a prolonged hypothermic ischemia, and inhibits mitochondrial permeability transition-pore (MPTP) opening. Isolated rats hearts ( n = 72) were exposed to 8 h of cold ischemia and assigned to the following groups: 1) reperfusion with low pressure (LP = 70 cmH2O) and 2) reperfusion with normal pressure (NP = 100 cmH2O). Cardiac function was assessed during reperfusion using the Langendorff model. Mitochondria were isolated, and the Ca2+resistance capacity (CRC) of the MPTP was determined. Malondialdehyde (MDA) production, caspase-3 activity, and cytochrome c …
Physiological and metabolic actions of mycophenolate mofetil on cultured newborn rat cardiomyocytes in normoxia and in simulated ischemia
Mycophenolate mofetil (MMF) is a new immunosuppressive drug used to reduce acute rejection after heart transplantation. As with other immunosuppressive drugs, MMF therapy is associated with several adverse effects. However, the direct effects of MMF on myocardial tissue has not been yet evaluated. The aim of the work was thus to evaluate the effects of MMF on isolated cardiomyocytes (CM) in normal conditions and in an in vitro model of simulated ischemia (SI; substrate-free hypoxia) and reperfusion (R; reoxygenation). Myocyte-enriched cultures were prepared from newborn rat heart ventricles. The transmembrane potentials were recorded using conventional microelectrodes and the cell contracti…
Titanate nanotubes: towards a novel and safer nanovector for cardiomyocytes.
Actively contractile cardiomyocyte (CM) monolayer represents an interesting tool to study both cardiac diseases and injuries. However, this model is poorly transfectable with conventional agents. Consequently, there is a need to develop new carriers that could overcome this problem. Titanate nanotubes (TiONts) could be a potential candidate due to possibly higher cell uptake as a direct consequence of their shape. On the basis of this rationale, TiONts were assessed for their cytotoxicity and internalization pathways. Cytotoxicity was assessed for TiONts either functionalized with PEI or unfunctionalized and its spherical counterpart P25 TiO2. No cytotoxic effect was observed under TiONts, …
Should aortic stiffness be evaluated in thoracic aortic aneurysm/dissection relatives to prevent risks?
International audience
Cardiac arrhythmias induced by an electrical stimulation at a cellular level
To provide insights into the impulse propagation between cardiac myocytes, we performed studies of excitation spread with cellular resolution in confluent monolayers of cultured cardiomyocytes (CM). Multisite field potentials have been recorded using microelectrode arrays (MEA) technology in a basal condition and in proarrhythmic conditions induced by a high frequency electrical stimulation. The in vitro observation of spiral waves opens a new way to test the anti-arrhythmic drugs or strategies at cellular level.
Influence of Surface Charge and Polymer Coating on Internalization and Biodistribution of Polyethylene Glycol-Modified Iron Oxide Nanoparticles
International audience; The aim of this study was to investigate the influence of the surface charge and coating of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on their in vitro and in vivo behaviors. Neutral and negatively-charged PEG-based SPIONs were synthesized and compared to Resovist (R), a carboxydextran-based SPION currently used in clinics. Their cytotoxicity, cell internalization, and potential as contrast agents for magnetic resonance imaging were assessed. Neutral pegylated SPIONs were internalized less readily by the reticuloendothelial system and showed a lower uptake by the liver, compared to negatively-charged SPIONs (with carboxydextran and PEG). These results sugge…
Calcitonin gene-related peptide partly protects cultured smooth muscle cells from apoptosis induced by an oxidative stress via activation of ERK1/2 MAPK.
Abstract Oxidative stress induced by a glucose/glucose oxidase (G/GO) generator system dose-dependently decreased the viability of cultured vascular smooth muscle cells (VSMC) as estimated by MTT assay. Cell death was induced in 40% of cells exposed to 0.2 IU/ml of the free radical generating mixture. Annexin-V labeling, Hoechst staining together with DNA laddering demonstrated that apoptosis was responsible for this cell loss. Pretreatment of the cells with 10−8 M calcitonin gene-related peptide (CGRP) significantly attenuated the damaging effect of the oxidative stress. Indeed, cell viability was estimated to be 80% in CGRP-treated group, instead of 60% in absence of CGRP treatment. This …