0000000001018804

AUTHOR

Georges Pinczon

showing 16 related works from this author

Ideaux à gauche dans les quotients simples de l'algèbre enveloppante de sl(2)

1973

International audience

[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]General Mathematics010102 general mathematics0103 physical sciences010307 mathematical physics0101 mathematics[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT]01 natural sciencesComputingMilieux_MISCELLANEOUSMathematics[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]
researchProduct

The graded Lie algebra structure of Lie superalgebra deformation theory

1989

We show how Lie superalgebra deformation theory can be treated by graded Lie algebras formalism. Rigidity and integrability theorems are obtained.

Pure mathematics[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]Simple Lie groupMathematics::Rings and Algebras010102 general mathematicsStatistical and Nonlinear PhysicsLie superalgebraKilling form01 natural sciencesAffine Lie algebra[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Lie conformal algebraGraded Lie algebraAlgebraAdjoint representation of a Lie algebraRepresentation of a Lie group0103 physical sciences010307 mathematical physics0101 mathematicsComputingMilieux_MISCELLANEOUSComputer Science::DatabasesMathematical PhysicsMathematicsLetters in Mathematical Physics
researchProduct

Quantization of Poisson Lie Groups and Applications

1996

LetG be a connected Poisson-Lie group. We discuss aspects of the question of Drinfel'd:can G be quantized? and give some answers. WhenG is semisimple (a case where the answer isyes), we introduce quantizable Poisson subalgebras ofC ∞(G), related to harmonic analysis onG; they are a generalization of F.R.T. models of quantum groups, and provide new examples of quantized Poisson algebras.

58B30Pure mathematicsGeneralizationPoisson distribution01 natural sciencesHarmonic analysissymbols.namesakeQuantization (physics)58F060103 physical sciences0101 mathematicsQuantumMathematical PhysicsComputingMilieux_MISCELLANEOUSMathematicsPoisson algebraDiscrete mathematics[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]Group (mathematics)010102 general mathematicsLie groupStatistical and Nonlinear Physics81S1017B37[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]symbols010307 mathematical physics16W30
researchProduct

The enveloping algebra of the Lie superalgebra osp(1,2)

1990

International audience

Algebra and Number Theory[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]010102 general mathematicsCurrent algebraUniversal enveloping algebraLie superalgebraN = 2 superconformal algebra01 natural sciencesAffine Lie algebraSuper-Poincaré algebraGraded Lie algebraLie conformal algebra[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Algebra0103 physical sciences010307 mathematical physics0101 mathematicsMathematics::Representation TheoryComputingMilieux_MISCELLANEOUSMathematics
researchProduct

A natural and rigid model of quantum groups

1992

We introduce a natural (Frechet-Hopf) algebra A containing all generic Jimbo algebras U t (sl(2)) (as dense subalgebras). The Hopf structures on A extend (in a continuous way) the Hopf structures of generic U t (sl(2)). The Universal R-matrices converge in A\(\hat \otimes \)A. Using the (topological) dual of A, we recover the formalism of functions of noncommutative arguments. In addition, we show that all these Hopf structures on A are isomorphic (as bialgebras), and rigid in the category of bialgebras.

Discrete mathematicsFormalism (philosophy of mathematics)Pure mathematicsRigid modelQuantum groupMathematics::Quantum AlgebraMathematics::Rings and AlgebrasStatistical and Nonlinear PhysicsHopf algebraNoncommutative geometryQuantumMathematical PhysicsMathematicsLetters in Mathematical Physics
researchProduct

Non linear representations of Lie Groups

1977

International audience

Pure mathematics[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]General MathematicsSimple Lie group010102 general mathematicsAdjoint representation01 natural sciencesRepresentation theory[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Spin representationRepresentation of a Lie groupRepresentation theory of SU0103 physical sciencesFundamental representation010307 mathematical physicsLie theory[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT]0101 mathematicsComputingMilieux_MISCELLANEOUSMathematics
researchProduct

THE AMITSUR–LEVITZKI THEOREM FOR THE ORTHOSYMPLECTIC LIE SUPERALGEBRA osp(1, 2n)

2006

http://www.worldscinet.com/jaa/05/0503/S0219498806001740.html; International audience; Based on Kostant's cohomological interpretation of the Amitsur–Levitzki theorem, we prove a super version of this theorem for the Lie superalgebras osp(1, 2n). We conjecture that no other classical Lie superalgebra can satisfy an Amitsur–Levitzki type super identity. We show several (super) identities for the standard super polynomials. Finally, a combinatorial conjecture on the standard skew supersymmetric polynomials is stated.

Pure mathematicsAlgebra and Number TheoryConjecture[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]Applied Mathematics010102 general mathematicsMathematics::Rings and AlgebrasSkewLie superalgebraType (model theory)16. Peace & justice01 natural sciences[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Interpretation (model theory)Identity (mathematics)Mathematics::Quantum Algebra0103 physical sciences010307 mathematical physics0101 mathematicsMathematics::Representation TheoryMathematics
researchProduct

Back to the Amitsur-Levitzki theorem: a super version for the orthosymplectic Lie superalgebra osp(1, 2n)

2003

We prove an Amitsur-Levitzki type theorem for the Lie superalgebras osp(1,2n) inspired by Kostant's cohomological interpretation of the classical theorem. We show that the Lie superalgebras gl(p,q) cannot satisfy an Amitsur-Levitzki type super identity if p, q are non zero and conjecture that neither can any other classical simple Lie superalgebra with the exception of osp(1,2n).

Lie superalgebraType (model theory)17B2001 natural sciencesInterpretation (model theory)CombinatoricsIdentity (mathematics)Simple (abstract algebra)Mathematics::Quantum Algebra0103 physical sciencesFOS: Mathematics0101 mathematicsRepresentation Theory (math.RT)Classical theoremMathematics::Representation TheoryMathematical PhysicsPhysicsConjecture[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]010308 nuclear & particles physics010102 general mathematicsMathematics::Rings and AlgebrasStatistical and Nonlinear Physics16. Peace & justice17B56[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]17B20; 17B56Mathematics - Representation Theory
researchProduct

The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations

1994

A notion of well-behaved Hopf algebra is introduced; reflexivity (for strong duality) between Hopf algebras of Drinfeld-type and their duals, algebras of coefficients of compact semi-simple groups, is proved. A hidden classical group structure is clearly indicated for all generic models of quantum groups. Moyal-product-like deformations are naturally found for all FRT-models on coefficients andC∞-functions. Strong rigidity (H bi 2 ={0}) under deformations in the category of bialgebras is proved and consequences are deduced.

Classical groupPure mathematicsQuantum groupDeformation theoryLie groupStatistical and Nonlinear PhysicsHopf algebra17B37Algebra81R50Compact groupMathematics::Quantum AlgebraStrong dualityDual polyhedron16W30Mathematical PhysicsMathematics
researchProduct

A star-product approach to noncompact Quantum Groups

1995

Using duality and topological theory of well behaved Hopf algebras (as defined in [2]) we construct star-product models of non compact quantum groups from Drinfeld and Reshetikhin standard deformations of enveloping Hopf algebras of simple Lie algebras. Our star-products act not only on coefficient functions of finite-dimensional representations, but actually on all $C^\infty$ functions, and they exist even for non linear (semi-simple) Lie groups.

PhysicsHigh Energy Physics - TheoryPure mathematics[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]010102 general mathematicsLie groupDuality (optimization)Statistical and Nonlinear Physics16. Peace & justiceHopf algebra01 natural sciences[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Nonlinear systemSimple (abstract algebra)Product (mathematics)Mathematics::Quantum Algebra0103 physical sciencesLie algebraMathematics - Quantum Algebra010307 mathematical physics0101 mathematicsQuantumMathematical PhysicsComputingMilieux_MISCELLANEOUS
researchProduct

Nonlinear multipliers and applications

1985

International audience

[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]010308 nuclear & particles physicsGeneral Mathematics81C4001 natural sciences[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Nonlinear system0103 physical sciencesApplied mathematics010307 mathematical physics22E45[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT]ComputingMilieux_MISCELLANEOUSMathematicsPacific Journal of Mathematics
researchProduct

New applications of graded Lie algebras to Lie algebras, generalized Lie algebras and cohomology

2007

We give new applications of graded Lie algebras to: identities of standard polynomials, deformation theory of quadratic Lie algebras, cyclic cohomology of quadratic Lie algebras, $2k$-Lie algebras, generalized Poisson brackets and so on.

[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]2k-Lie algebrasstandard polynomial.standard polynomial[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Deformation theoryGerstenhaber-Nijenhuis bracketFOS: Mathematicsgraded Lie algebrasquadratic Lie algebra[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT]Representation Theory (math.RT)Gerstenhaber bracketcyclic cohomologysuper Poisson bracketsMathematics - Representation TheorySchouten bracket17B70 17B05 17B20 17B56 17B60 17B65
researchProduct

The hidden group structure of Quantum Groups:strong duality,rigidity and preferred deformations

1994

International audience

[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT][MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT]ComputingMilieux_MISCELLANEOUS[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]
researchProduct

Une Algèbre de Lie non semi-simple rigide et sympathique

1992

International audience

[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT][MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT]ComputingMilieux_MISCELLANEOUS[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]
researchProduct

Sur la 1-Cohomologie des Groupes de Lie Semi-Simples

1974

International audience

[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT][MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT]ComputingMilieux_MISCELLANEOUS[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]
researchProduct

The structure of sl(2,1)-supersymmetry:irreducible representations and primitive ideals

1994

International audience

[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT][MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT]ComputingMilieux_MISCELLANEOUS[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]
researchProduct