0000000001044835

AUTHOR

Robert A. Weller

showing 4 related works from this author

Heavy-Ion-Induced Degradation in SiC Schottky Diodes : Incident Angle and Energy Deposition Dependence

2017

International audience; Heavy-ion-induced degradation in the reverse leakage current of SiC Schottky power diodes exhibits a strong dependence on the ion angle of incidence. This effect is studied experimentally for several different bias voltages applied during heavy-ion exposure. In addition, TCAD simulations are used to give insight on the physical mechanisms involved.

Nuclear and High Energy PhysicsMaterials scienceSchottky barrierschottky diodesmodelling (creation related to information)01 natural sciencesElectronic mailIonpower semiconductor devicesReverse leakage currentchemistry.chemical_compoundsilicon carbide0103 physical sciencesSilicon carbideElectrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsDiode010302 applied physicsta114010308 nuclear & particles physicsbusiness.industrydiodesSchottky diodesiliconmodelingradiationNuclear Energy and EngineeringchemistryionsOptoelectronicsbusinession radiation effectsVoltageIEEE Transactions on Nuclear Science
researchProduct

Incident angle effect on heavy ion induced reverse leakage current in SiC Schottky diodes

2016

Heavy-ion induced degradation in the reverse leakage current of SiC Schottky power diodes shows distinct dependence on the angle of incidence. TCAD simulations have been used to study the physical mechanisms involved.

Materials scienceSchottky barrierchemistry.chemical_elementSchottky diodes01 natural sciencesIonpower semiconductor devicesReverse leakage currentchemistry.chemical_compoundXenonsilicon carbide0103 physical sciencesSilicon carbidecurrent-voltage characteristicsDiode010302 applied physicsta114ta213010308 nuclear & particles physicsbusiness.industrySchottky diodeAngle of incidencemodelingchemistryOptoelectronicsbusinession radiation effects
researchProduct

Heavy Ion Induced Degradation in SiC Schottky Diodes : Bias and Energy Deposition Dependence

2017

Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence. peerReviewed

Nuclear and High Energy PhysicsMaterials scienceAnnealing (metallurgy)Schottky barrierschottky diodes01 natural sciencesFluenceIonpower semiconductor deviceschemistry.chemical_compoundsilicon carbide0103 physical sciencesSilicon carbidecurrent-voltage characteristicsElectrical and Electronic EngineeringLeakage (electronics)Diode010302 applied physicsta114ta213010308 nuclear & particles physicsbusiness.industrySchottky diodemodelingNuclear Energy and EngineeringchemistryOptoelectronicsbusinession radiation effectsIEEE Transactions on Nuclear Science
researchProduct

Heavy-Ion-Induced Degradation in SiC Schottky Diodes : Incident Angle and Energy Deposition Dependence

2017

Heavy-ion-induced degradation in the reverse leakage current of SiC Schottky power diodes exhibits a strong dependence on the ion angle of incidence. This effect is studied experimentally for several different bias voltages applied during heavy-ion exposure. In addition, TCAD simulations are used to give insight on the physical mechanisms involved. peerReviewed

power semiconductor devicesmallintaminenpiiionitsilicon carbideschottky diodesmodelingdioditsäteilyion radiation effects
researchProduct