0000000001053192

AUTHOR

Antonio Monari

Trans-to-cis photoisomerization of cyclocurcumin in different environments rationalized by computational photochemistry

International audience; Cyclocurcumin is a turmeric component that attracted much less attention compared to the well known curcumin. In spite of the less deep charcaterization of its properties, cyclocurcumin has shown promising anticancer effects when used in combination with curcumin. Especially, due to its peculiar molecular structure, cyclocurcumin can be regarded as an almost ideal photoswitch, whose capabilities can also be exploited for relevant biological applications. Here, by means of state-of-the-art computational methods for electronic excited-state calculations (TD-DFT, MS-CASPT2, XMS-CASPT2) we analyze in detail the absorption and photoisomerization pathways leading from the …

research product

Coupled-Cluster study of ‘no-pair’ bonding in the tetrahedral Cu4 cluster

Abstract Ab initio Coupled-Cluster calculations with single and double excitations and perturbative correction to the triple, CCSD(T), have been carried out for the high-spin electronic state, ( 5 A 2 ) , of the copper cluster Cu 4 in its tetrahedral arrangement. Like alkali metals clusters, tetrahedral Cu 4 presents a bound quintet state, i.e., a situation where all the valence electrons are unpaired. This rather exotic wavefunction, also known as no-pair bonding state, is examined in detail. The influence of the basis set is also analyzed, as well as the importance of the core correlation and the effect of the basis-set superposition errors.

research product

Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection

The identification of chemical compounds able to bind specific sites of the human/viral proteins involved in the SARS-CoV-2 infection cycle is a prerequisite to design effective antiviral drugs. Here we conduct a molecular dynamics study with the aim to assess the interactions of ivermectin, an antiparasitic drug with broad-spectrum antiviral activity, with the human Angiotensin-Converting Enzyme 2 (ACE2), the viral 3CLpro and PLpro proteases, and the viral SARS Unique Domain (SUD). The drug/target interactions have been characterized in silico by describing the nature of the non-covalent interactions found and by measuring the extent of their time duration along the MD simulation. Results …

research product

Structure and Dynamics of RNA Guanine Quadruplexes in SARS-CoV-2 Genome. Original Strategies against Emerging Viruses

Guanine quadruplex (G4) structures in the viral genome have a key role in modulating viruses' biological activity. While several DNA G4 structures have been experimentally resolved, RNA G4s are definitely less explored. We report the first calculated G4 structure of the RG-1 RNA sequence of SARS-CoV-2 genome, obtained by using a multiscale approach combining quantum and classical molecular modeling and corroborated by the excellent agreement between the corresponding calculated and experimental circular dichroism spectra. We prove the stability of the RG-1 G4 arrangement as well as its interaction with G4 ligands potentially inhibiting viral protein translation.

research product

Circular Dichroism of DNA G-Quadruplexes: Combining Modeling and Spectroscopy To Unravel Complex Structures

We report on the comparison between the computational and experimental determination of electronic circular dichroism spectra of different guanine quadruplexes obtained from human telomeric sequences. In particular the difference between parallel, antiparallel, and hybrid structures is evidenced, as well as the induction of transitions between the polymorphs depending on the solution environment. Extensive molecular dynamics simulations (MD) are used to probe the conformational space of the different quadruplexes, and subsequently state-of-the-art hybrid quantum mechanics/molecular mechanics (QM/MM) techniques coupled with excitonic semiempirical Hamiltonian are used to simulate the macromo…

research product

Human DNA Telomeres in Presence of Oxidative Lesions: The Crucial Role of Electrostatic Interactions on the Stability of Guanine Quadruplexes

By using all atom molecular dynamics simulations, we studied the behavior of human DNA telomere sequences in guanine quadruplex (G4) conformation and in the presence of oxidative lesions, namely abasic sites. In particular, we evidenced that while removing one guanine base induces a significant alteration and destabilization of the involved leaflet, human telomere oligomers tend, in most cases, to maintain at least a partial quadruplex structure, eventually by replacing the empty site with undamaged guanines of different leaflets. This study shows that (i) the disruption of the quadruplex leaflets induces the release of at least one of the potassium cations embedded in the quadruplex channe…

research product

Role of RNA Guanine Quadruplexes in Favoring the Dimerization of SARS Unique Domain in Coronaviruses

ABSTRACTCoronaviruses may produce severe acute respiratory syndrome (SARS). As a matter of fact, a new SARS-type virus, SARS-CoV-2, is responsible of a global pandemic in 2020 with unprecedented sanitary and economic consequences for most countries. In the present contribution we study, by all-atom equilibrium and enhanced sampling molecular dynamics simulations, the interaction between the SARS Unique Domain and RNA guanine quadruplexes, a process involved in eluding the defensive response of the host thus favoring viral infection of human cells. Our results evidence two stable binding modes involving an interaction site spanning either the protein dimer interface or only one monomer. The …

research product

Iron’s Wake: The Performance of Quantum Mechanical-Derived Versus General-Purpose Force Fields Tested on a Luminescent Iron Complex

Recently synthetized iron complexes have achieved long-lived excited states and stabilities which are comparable, or even superior, to their ruthenium analogues, thus representing an eco-friendly and cheaper alternative to those materials based on rare metals. Most of computational tools which could help unravel the origin of this large efficiency rely on ab-initio methods which are not able, however, to capture the nanosecond time scale underlying these photophysical processes and the influence of their realistic environment. Therefore, it exists an urgent need of developing new low-cost, but still accurate enough, computational methodologies capable to deal with the steady-state and trans…

research product

Hypoxia-Selective Dissociation Mechanism of a Nitroimidazole Nucleoside in a DNA Environment

Photodynamic therapy is a promising approach to treat a variety of superficial tumors and other diseases. One of its major limitations arises from its dependence on molecular oxygen, which decreases the efficiency of the therapy in hypoxia conditions commonly developed by solid tumors. The present contribution reveals the molecular mechanism of a modified thymine bearing a nitroimidazole substituent, a photosensitizer able to produce highly harmful interstrand cross-links in the DNA double strand after irradiation selectively in absence of oxygen. The mechanism is resolved at a fully atomistic and electronic level relying on quantum mechanics (CASPT2, coupled-cluster, DFT, and TD-DFT method…

research product

Triplet stabilization for enhanced drug photorelease from sunscreen-based photocages

[EN] Recently, sunscreen-based drug photocages have been introduced to provide UV protection to photoactive drugs, thus increasing their photosafety. Here, combined experimental and theoretical studies performed on a photocage based on the commercial UVA filter avobenzone (AB) and on the photosensitizing non-steroidal anti-inflammatory drug ketoprofen (KP) are presented unveiling the photophysical processes responsible for the light-triggered release. Particular attention is paid to solvent stabilization of the drug and UV filter excited states, respectively, which leads to a switching between the triplet excited state energies of the AB and KP units. Most notably, we show that the stabiliz…

research product

Photoinduced DNA Lesions in Dormant Bacteria. The Peculiar Route Leading to Spore Photoproduct Unraveled by Multiscale Molecular Dynamics

Some bacterial species enter a dormant state in the form of spores to resist to unfavorable external conditions. Spores are resistant to a wide series of stress agents, including UV radiation, and can last for tens to hundreds of years. Due to the suspension of biological functions such as DNA repair, they accumulate DNA damage upon exposure to UV radiation. Differently from active organisms, the most common DNA photoproduct in spores are not cyclobutane pyrimidine dimers, but rather the so-called spore photoproduct. This non-canonical photochemistry results from the dry state of DNA and the binding to small acid soluble proteins that drastically modify the structure and photoreactivity of …

research product

First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases

An extensive theoretical characterization of the singlet excited state manifold of the five canonical DNA/RNA nucleobases (thymine, cytosine, uracil, adenine and guanine) in gas-phase is carried out with time-dependent density functional theory (TD-DFT) and restricted active space second-order perturbation theory (RASPT2) approaches. Both ground state and excited state absorptions are analyzed and compared between these different theoretical approaches, assessing the performance of the hybrid B3LYP and CAM-B3LYP (long-range corrected) functionals with respect to the RASPT2 reference. By comparing the TD-DFT estimates with our reference for high-lying excited states, we are able to narrow do…

research product

Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates.

[EN] Interaction of nucleic acids with light is a scientific question of paramount relevance not only in the understanding of life functioning and evolution, but also in the insurgence of diseases such as malignant skin cancer and in the development of biomarkers and novel light-assisted therapeutic tools. This work shows that the UVA portion of sunlight, not absorbed by canonical DNA nucleobases, can be absorbed by 5-formyluracil (ForU) and 5-formylcytosine (ForC), two ubiquitous oxidatively generated lesions and epigenetic intermediates present in living beings in natural conditions. We measure the strong propensity of these molecules to populate triplet excited states able to transfer th…

research product

Thermodynamics of the interaction between the spike protein of severe acute respiratory syndrome- coronavirus-2 and the receptor of human angiotensin converting enzyme 2. Effects of possible ligands

Since the end of 2019, the coronavirus SARS-CoV-2 has caused more than 180,000 deaths all over the world, still lacking a medical treatment despite the concerns of the whole scientific community. Human Angiotensin-Converting Enzyme 2 (ACE2) was recently recognized as the transmembrane protein serving as SARS-CoV-2 entry point into cells, thus constituting the first biomolecular event leading to COVID-19 disease. Here, by means of a state-of-the-art computational approach, we propose a rational evaluation of the molecular mechanisms behind the formation of the complex and of the effects of possible ligands. Moreover, binding free energy between ACE2 and the active Receptor Binding Domain (RB…

research product

Towards Iron(II) Complexes with Octahedral Geometry: Synthesis, Structure and Photophysical Properties

The control of ligand-field splitting in iron (II) complexes is critical to slow down the metal-to-ligand charge transfer (MLCT)-excited states deactivation pathways. The gap between the metal-centered states is maximal when the coordination sphere of the complex approaches an ideal octahedral geometry. Two new iron(II) complexes (C1 and C2), prepared from pyridylNHC and pyridylquinoline type ligands, respectively, have a near-perfect octahedral coordination of the metal. The photophysics of the complexes have been further investigated by means of ultrafast spectroscopy and TD-DFT modeling. For C1, it is shown that&mdash

research product

Induced Night-Vision by Singlet-Oxygen-Mediated Activation of Rhodopsin

In humans, vision is limited to a small fraction of the whole electromagnetic spectrum. One possible strategy for enhancing vision in deep-red or poor-light conditions consists of recruiting chlorophyll derivatives in the rod photoreceptor cells of the eye, as suggested in the case of some deep-sea fish. Here, we employ all-atom molecular simulations and high-level quantum chemistry calculations to rationalize how chlorin e6 (Ce6), widely used in photodynamic therapy although accompanied by enhanced visual sensitivity, mediates vision in the dark, shining light on a fascinating but largely unknown molecular mechanism. First, we identify persistent interaction sites between Ce6 and the extra…

research product

Targeting G-quadruplexes with Organic Dyes: Chelerythrine–DNA Binding Elucidated by Combining Molecular Modeling and Optical Spectroscopy

The DNA-binding of the natural benzophenanthridine alkaloid chelerythrine (CHE) has been assessed by combining molecular modeling and optical absorption spectroscopy. Specifically, both double-helical (B-DNA) and G-quadruplex sequences&mdash

research product

Forever Young: Structural Stability of Telomeric Guanine-Quadruplexes in Presence of Oxidative DNA Lesions

AbstractHuman telomeric DNA (h-Telo), in G-quadruplex (G4) conformation, is characterized by a remarkable structural stability that confers it the capacity to resist to oxidative stress producing one or even clustered 8-oxoguanine lesions. We present a combined experimental/computational investigation, by using circular dichroism in aqueous solutions, cellular immunofluorescence assays and molecular dynamics (MD) simulations, that identifies the crucial role of the stability of G4s to oxidative lesions, related also to their biological role as inhibitors of telomerase, an enzyme overexpressed in most cancers associated to oxidative stress.

research product

Hydrogen abstraction by photoexcited benzophenone: consequences for DNA photosensitization

International audience; We report a computational investigation of the hydrogen abstraction (H-abstraction) induced by triplet benzophenone (3BP) on thymine nucleobase and backbone sugar. The chemical process is studied using both high level multiconfigurational perturbation and density functional theory. Both methods show good agreement in predicting small kinetic barriers. Furthermore the behavior of benzophenone in DNA is simulated using molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. The accessibility of benzophenone to the labile hydrogens within B-DNA is demonstrated, as well as the driving force for this reaction. We evidence a strong dependence of the H-…

research product

Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates

[EN] The propensity of 5-formyluracil and 5-formylcytosine, i.e. oxidative lesions and epigenetic intermediates, in acting as intrinsic DNA photosensitizers is unraveled by using a combination of molecular modeling, simulation and spectroscopy. Exploration of potential energy surfaces and non-adiabatic dynamics confirm a higher intersystem crossing rate for 5-formyluracil, whereas the kinetic models evidence different equilibria in the excited states for both compounds.

research product

Structure of the 5′ untranslated region in SARS-CoV-2 genome and its specific recognition by innate immune systemviathe human oligoadenylate synthase 1

2′-5′-Oligoadenylate synthetase 1 (OAS1) is one of the key enzymes driving the innate immune system response to SARS-CoV-2 infection whose activity has been related to COVID-19 severity. OAS1 is a sensor of endogenous RNA that triggers the 2′-5′-oligoadenylate/RNase L pathway. Upon SARS-CoV-2 infection, OAS1 is responsible for the recognition of viral RNA and has been shown to possess a particularly high sensitivity for the 5′-untranslated (5′-UTR) RNA region, which is organized in a double-strand stem loop motif (SL1). Here we report the structure of the SL1/OAS1 complex also rationalizing the high affinity for OAS1.

research product

Forever Young: Structural Stability of Telomeric Guanine Quadruplexes in the Presence of Oxidative DNA Lesions**

International audience; Human telomeric DNA, in G-quadruplex (G4) conformation, is characterized by a remarkable structural stability that confers it the capacity to resist to oxidative stress producing one or even clustered 8-oxoguanine (8oxoG) lesions. We present a combined experimental/computational investigation, by using circular dichroism in aqueous solutions, cellular immunofluorescence assays and molecular dynamics simulations, that identifies the crucial role of the stability of G4s to oxidative lesions, related also to their biological role as inhibitors of telomerase, an enzyme overexpressed in most cancers associated to oxidative stress.

research product

Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level

International audience; Benzophenone, the parent of the diarylketone family, is a versatile compound commonly used as a UV blocker. It may also trigger triplet-based DNA photosensitization. Therefore, benzophenone is involved in DNA photodamage induction. In the absence of experimentally resolved structure, the mechanism of DNA damage production remains elusive. Employing a hybrid quantum mechanics/molecular mechanics approach, here we address the spin transfer mechanism between this drug and proximal thymine, that is, the DNA nucleobase most prone to suffer triplet damages.

research product

Photoinduced DNA Lesions in Dormant Bacteria: The Peculiar Route Leading to Spore Photoproducts Characterized by Multiscale Molecular Dynamics

International audience; Some bacterial species enter a dormant state in the form of spores to resist to unfavorable external conditions. Spores are resistant to a wide series of stress agents, including UV radiation, and can last for tens to hundreds of years. Due to the suspension of biological functions, such as DNA repair, they accumulate DNA damage upon exposure to UV radiation. Differently from active organisms, the most common DNA photoproducts in spores are not cyclobutane pyrimidine dimers, but rather the so‐called spore photoproducts. This noncanonical photochemistry results from the dry state of DNA and its binding to small, acid‐soluble proteins that drastically modify the struct…

research product

Bidentate pyridyl‐NHC ligands: synthesis, ground and excited state properties of their iron(II) complexes and role of the fac/mer isomerism

International audience; Iron complexes are promising candidates for the development of sustainable molecular photoactive materials as an alternative to those based on precious metals such as Ir, Pt or Ru. These compounds possess metal-ligand charge transfer (MLCT) transitions potentially of high interest for energy conversion or photocatalysis applications if the ultrafast deactivation via lower-lying metal-centred (MC) states can be impeded. Following an introduction describing the main design strategies used so far to increase the MLCT lifetimes, we review some of our latest contributions to the field regarding bidentate Fe(II) complexes comprising N-heterocyclic carbene ligands. The disc…

research product

Thermodynamics of the Interaction between the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus-2 and the Receptor of Human Angiotensin-Converting Enzyme 2. Effects of Possible Ligands

Since the end of 2019, the coronavirus SARS-CoV-2 has caused more than 1000000 deaths all over the world and still lacks a medical treatment despite the attention of the whole scientific community. Human angiotensin-converting enzyme 2 (ACE2) was recently recognized as the transmembrane protein that serves as the point of entry of SARS-CoV-2 into cells, thus constituting the first biomolecular event leading to COVID-19 disease. Here, by means of a state-of-the-art computational approach, we propose a rational evaluation of the molecular mechanisms behind the formation of the protein complex. Moreover, the free energy of binding between ACE2 and the active receptor binding domain of the SARS…

research product

Understanding the Interactions of Guanine Quadruplexes with Peptides as Novel Strategies for Diagnosis or Tuning Biological Functions

Guanine quadruplexes (G4s) are nucleic acid structures exhibiting a complex structural behavior and exerting crucial biological functions, in both cells and viruses. The specific interactions of peptides with G4s, as well as the understanding of the factors driving the specific recognition, are important for the rational design of both therapeutic and diagnostic agents. In the present minireview, we examine the most important studies dealing with the interactions between G4s and peptides, highlighting the strengths and limitations of the present analytic approaches. We also show how the combined use of high-level molecular simulation techniques and experimental spectroscopy represents the b…

research product

Full Configuration-Interaction Study on the Tetrahedral Li4 Cluster

International audience; The Li4 cluster low lying electronic states were studied. In particular we investigated the tetrahedral geometry at full CI and coupled cluster level, with basis sets of increasing quality. The 5A2 electronic state, characterized by having all the valence electrons unpaired, forming a quite stable no-pair bonding state, was studied in greater detail. In order to compare the energies we also studied the Li4 rhombus singlet ground state. The ability of coupled cluster with perturbative triples to correctly reproduce energy levels in a quasi-degenerate system was validated with respect to the full CI.

research product

DNA Photodamage and Repair: Computational Photobiology in Action

DNA is constantly exposed to external and metabolic stress agents, including the solar radiation and in particular the UV portion of the electromagnetic spectrum. Such source of stress can induce photochemical modification of the structure of DNA and of its basic components, i.e. the nucleobases. DNA lesions may ultimately lead to genomic instability, mutations, and even to carcinogenesis. Hence, cells dispose of complex biochemical repair pathways in charge of remove the DNA lesions and avoid their accumulation. In this Chapter, we present the complexity of the DNA lesion chemical and structural space, also complicated by the intricate coupling with the biological relevant signaling pathwa…

research product

Specific Recognition of the 5′-Untranslated Region of West Nile Virus Genome by Human Innate Immune System

In the last few years, the sudden outbreak of COVID-19 caused by SARS-CoV-2 proved the crucial importance of understanding how emerging viruses work and proliferate, in order to avoid the repetition of such a dramatic sanitary situation with unprecedented social and economic costs. West Nile Virus is a mosquito-borne pathogen that can spread to humans and induce severe neurological problems. This RNA virus caused recent remarkable outbreaks, notably in Europe, highlighting the need to investigate the molecular mechanisms of its infection process in order to design and propose efficient antivirals. Here, we resort to all-atom Molecular Dynamics simulations to characterize the structure of th…

research product

NHC-Based Iron Sensitizers for DSSCs

International audience; Nanostructured dye-sensitized solar cells (DSSCs) are promising photovoltaic devices because of their low cost and transparency. Ruthenium polypyridine complexes have long been considered as lead sensitizers for DSSCs, allowing them to reach up to 11% conversion efficiency. However, ruthenium suffers from serious drawbacks potentially limiting its widespread applicability, mainly related to its potential toxicity and scarcity. This has motivated continuous research efforts to develop valuable alternatives from cheap earth-abundant metals, and among them, iron is particularly attractive. Making iron complexes applicable in DSSCs is highly challenging due to an ultrafa…

research product

Code Interoperability and Standard Data Formats in Quantum Chemistry and Quantum Dynamics: The Q5/Q5cost Data Model

Code interoperability and the search for domain-specific standard data formats represent critical issues in many areas of computational science. The advent of novel computing infrastructures such as computational grids and clouds make these issues even more urgent. The design and implementation of a common data format for quantum chemistry (QC) and quantum dynamics (QD) computer programs is discussed with reference to the research performed in the course of two Collaboration in Science and Technology Actions. The specific data models adopted, Q5Cost and D5Cost, are shown to work for a number of interoperating codes, regardless of the type and amount of information (small or large datasets) …

research product

High-spin states in tetrahedral X4 clusters (X = H, Li, Na, K)

The high-spin electronic states for lithium, sodium, and potassium four-atom clusters were studied. In particular, we performed coupled cluster geometry optimization of the quintet state in tetrahedral geometry. The quintet state of these systems is characterized by having all the valence electron Unpaired, giving rise to the so-called no-pair bonding. Single-point full configuration interaction computations on the equilibrium geometries for the various Clusters are also presented. The analysis of the valence orbitals in a localized representation confirms the importance of the p atomic orbitals to explain this unusual type of bond. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 8…

research product

Never cared for what they do. High structural stability of Guanine-quadruplexes in presence of strand-break damages

AbstractDNA integrity is an important factor to assure genome stability and, more generally, cells and organisms’ viability. In presence of DNA damage, the normal cell cycle is perturbed while cells activate their repair processes. Although efficient, the repair system is not always able to ensure the complete restoration of gene integrity. In these cases, not only mutations may occur, but the accumulation of lesions can either lead to carcinogenesis or reach a threshold which induces apoptosis and the programmed cell death. Among the different types of DNA lesions, strand breaks produced by ionizing radiations are the most toxic, due to their inherently difficult repair, which may lead to …

research product

Structure and dynamics of RNA guanine quadruplexes in SARS-CoV-2 genome. Original strategies against emerging viruses

Guanine quadruplexes (G4) structures in viral genome have a key role in modulating viruses’ biological activity. While several DNA G4 structures have been experimentally resolved, RNA G4s are definitely less explored. We report the first calculated G4 structure of the RG-1 RNA sequence of SARS-CoV-2 genome, obtained by using a multiscale approach combining quantum and classical molecular modelling and corroborated by the excellent agreement between the corresponding calculated and experimental circular dichroism spectra. We prove the stability of RG-1 G4 arrangement as well as its interaction with G4 ligands potentially inhibiting viral protein translation.

research product

The problem of interoperability: A common data format for quantum chemistry codes

A common format for quantum chemistry (QC), enhancing code interoperability and communication between different programs, has been designed and implemented. An XML-based format, QC-ML, is presented for representing quantities such as geometry, basis set, and so on, while an HDF5-based format is presented for the storage of large binary data files. Some preliminary applications that use the format have been implemented and are also described. This activity was carried out within the COST in Chemistry D23 project “MetaChem,” in the Working Group “A meta-laboratory for code integration in ab initio methods.” © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007

research product

G-quadruplex recognition by DARPIns through epitope/paratope analogy

AbstractWe investigated the mechanisms leading to the specific recognition of Guanine Guadruplex (G4) by DARPins peptides, which can lead to the design of G4s specific sensors. To this end we carried out all-atom molecular dynamic simulations to unravel the interactions between specific nucleic acids, including human-telomeric (h-telo), Bcl-2, and c-Myc, with different peptides, forming a DARPin/G4 complex. By comparing the sequences of DARPin with that of a peptide known for its high affinity for c-Myc, we show that the recognition cannot be ascribed to sequence similarity but, instead, depends on the complementarity between the three-dimensional arrangement of the molecular fragments invo…

research product

Never Cared for What They Do: High Structural Stability of Guanine-Quadruplexes in the Presence of Strand-Break Damage

DNA integrity is an important factor that assures genome stability and, more generally, the viability of cells and organisms. In the presence of DNA damage, the normal cell cycle is perturbed when cells activate their repair processes. Although efficient, the repair system is not always able to ensure complete restoration of gene integrity. In these cases, mutations not only may occur, but the accumulation of lesions can either lead to carcinogenesis or reach a threshold that induces apoptosis and programmed cell death. Among the different types of DNA lesions, strand breaks produced by ionizing radiation are the most toxic due to the inherent difficultly of repair, which may lead to genomi…

research product

Molecular basis of SARS-CoV-2 infection and rational design of potential antiviral agents: Modeling and simulation approaches

International audience; The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of k…

research product

Photophysical Investigation of Iron(II) Complexes Bearing Bidentate Annulated Isomeric Pyridine-NHC Ligands

The possibility of achieving luminescent and photophysically active metal-organic compounds relies on the stabilization of charge transfer states and kinetically and thermodynamically blocking non-...

research product

Dynamics of the excited-state hydrogen transfer in a (dG)·(dC) homopolymer: intrinsic photostability of DNA

Multiscale molecular dynamics simulations reveal out-of-plane distortions that favour DNA photostability. A novel photostability mechanism involving four proton transfers and triggered by a nearby Na+ ion is also unveiled.

research product

How Fragile We Are: Influence of Stimulator of Interferon Genes (STING) Variants on Pathogen Recognition and Immune Response Efficiency.

AbstractThe STimulator of INterferon Genes (STING) protein is a cornerstone of the human immune response. Its activation by cGAMP upon the presence of cytosolic DNA stimulates the production of type I interferons and inflammatory cytokines which are crucial for protecting cells from infections. STING signaling pathway can also influence both tumor-suppressive and tumor-promoting mechanisms, rendering it an appealing target for drug design. In the human population, several STING variants exist and exhibit dramatic differences in their activity, impacting the efficiency of the host defense against infections. Understanding the differential molecular mechanisms exhibited by these variants is o…

research product

CCDC 1982173: Experimental Crystal Structure Determination

Related Article: Mohamed Darari, Antonio Francés-Monerris, Bogdan Marekha, Abdelatif Doudouh, Emmanuel Wenger, Antonio Monari, Stefan Haacke, Philippe C. Gros|2020|Molecules|25|5991|doi:10.3390/molecules25245991

research product

CCDC 1992132: Experimental Crystal Structure Determination

Related Article: Mohamed Darari, Antonio Francés-Monerris, Bogdan Marekha, Abdelatif Doudouh, Emmanuel Wenger, Antonio Monari, Stefan Haacke, Philippe C. Gros|2020|Molecules|25|5991|doi:10.3390/molecules25245991

research product