0000000001069930
AUTHOR
Canio Noce
Dimensionality of the Superconductivity in the Transition Metal Pnictide WP
We report theoretical and experimental results on the transition metal pnictide WP. The theoretical outcomes based on tight-binding calculations and density functional theory indicate that WP is a three-dimensional superconductor with an anisotropic electronic structure and nonsymmorphic symmetries. On the other hand, magnetoresistance experimental data and the analysis of superconducting fluctuations of the conductivity in external magnetic field indicate a weakly anisotropic three-dimensional superconducting phase.
Tuning interchain ferromagnetic instability in A2Cr3As3 ternary arsenides by chemical pressure and uniaxial strain
We analyze the effects of chemical pressure induced by alkali metal substitution and uniaxial strain on magnetism in the A2Cr3As3 (A = Na, K, Rb, Cs) family of ternary arsenides with quasi-one dimensional structure. Within the framework of the density functional theory, we predict that the non-magnetic phase is very close to a 3D collinear ferrimagnetic state, which realizes in the regime of moderate correlations, such tendency being common to all the members of the family with very small variations due to the different interchain ferromagnetic coupling. We uncover that the stability of such interchain ferromagnetic coupling has a non-monotonic behavior with increasing the cation size, bein…
Spin–orbit coupling effects on the electronic properties of the pressure-induced superconductor CrAs
We present the effects of spin-orbit coupling on the low-energy bands and Fermi surface of the recently discovered pressure-induced superconductor CrAs. We apply the L\"owdin down-folding procedure to a tight-binding hamiltonian that includes the intrinsic spin-orbit interaction, originating from the Cr 3d electrons as well as from As 4p ones. Our results indicate that As contributions have negligible effects, whereas the modifications to the band structure and the Fermi surface can be mainly ascribed to the Cr contribution. We show that the inclusion of the spin-orbit interaction allows for a selective removal of the band degeneracy due to the crystal symmetries, along specific high symmet…
Engineering Topological Nodal Line Semimetals in Rashba Spin-Orbit Coupled Atomic Chains
We study an atomic chain in the presence of modulated charge potential and modulated Rashba spin-orbit coupling (RSOC) of equal period. We show that for commensurate periodicities $\lambda=4 n$ with integer $n$, the three-dimensional synthetic space obtained by sliding the two phases of the charge potential and RSOC features a topological nodal line semimetal protected by an antiunitary particle-hole symmetry. The location and shape of the nodal lines strongly depend on the relative amplitude between the charge potential and RSOC.
Tuning nodal line semimetals in trilayered systems
We investigate two-dimensional trilayered quantum systems with multi-orbital conduction bands by focusing on the role played by the layer degree of freedom in setting the character of nodal line semimetals. The layer index can label the electronic states where the electrons reside in the unit cell and can enforce symmetry constraints in the electronic structure by protecting bands crossing. We demonstrate that both the atomic spin-orbit coupling and the removal of local orbital degeneracy can lead to different types of electronic transitions with nodal lines that undergo a changeover from a loop structure enclosing the center of the Brillouin zone to pockets winding around multiple high sym…
Topological Transition in Pb1-xSnxSe using Meta-GGA Exchange-Correlation Functional. Acta Physica Polonica A 136, 667 (2019), ERRATUM
Interplay Between Spin-Orbit Coupling and Structural Deformations in Heavy Transition-Metal Oxides with Tetrahedral Coordination
Topological transition in Pb1-xSnxSe using Meta-GGA
We calculate the mirror Chern number (MCN) and the band gap for the alloy Pb1-xSnxSe as a function of the concentration x by using virtual crystalline approximation. We use the electronic structure from the relativistic density functional theory calculations in the Generalized-Gradient- Approximation (GGA) and meta-GGA approximation. Using the modified Becke-Johnson meta- GGA functional, our results are comparable with the available experimental data for the MCN as well as for the band gap. We advise to use modified Becke-Johnson approximation with the parameter c=1.10 to describe the transition from trivial to topological phase for this class of compounds.
Multiple band crossings and Fermi surface topology: Role of double nonsymmorphic symmetries in MnP-type crystal structures
We use relativistic ab-initio methods combined with model Hamiltonian approaches to analyze the normal-phase electronic and structural properties of the recently discovered WP superconductor. Remarkably, the outcomes of such study can be employed to set fundamental connections among WP and the CrAs and MnP superconductors belonging to the same space group. One of the key features of the resulting electronic structure is represented by the occurrence of multiple band crossings along specific high symmetry lines of the Brilloiun zone. In particular, we demonstrate that the eight-fold band degeneracy obtained along the SR path at (kx,ky)=(Pi,Pi) is due to inversion-time reversal invariance and…
Intra-chain collinear magnetism and inter-chain magnetic phases in Cr3As3-K-based materials
We perform a comparative study of the KCr3As3 and the K2Cr3As3 quasi 1D compounds, and show that the strong interplay between the lattice and the spin degrees of freedom promotes a new collinear ferrimagnetic ground state within the chains in presence of intrachain antiferromagnetic couplings. We propose that the interchain antiferromagnetic coupling in KCr3As3 plays a crucial role for the experimentally observed spin-glass phase with low critical temperature. In the same region of the parameter space, we predict K2Cr3As3 to be non-magnetic but on the verge of the magnetism, sustaining interchain ferromagnetic spin fluctuations while the intrachain spin fluctuations are antiferromagnetic.
A minimal tight-binding model for the quasi-one-dimensional superconductor K2Cr3As3
We present a systematic derivation of a minimal five-band tight-binding model for the description of the electronic structure of the recently discovered quasi one-dimensional superconductor K2Cr3As3. Taking as a reference the density-functional theory (DFT) calculation, we use the outcome of a Lowdin procedure to refine a Wannier projection and fully exploit the predominant weight at the Fermi level of the states having the same symmetry of the crystal structure. Such states are described in terms of five atomic-like d orbitals: four planar orbitals, two dxy and two dx2-y2, and a single out-of-plane one, dz2 . We show that this minimal model reproduces with great accuracy the DFT band struc…