0000000001101098

AUTHOR

Hannie Kremer

showing 27 related works from this author

Usher syndrome: molecular links of pathogenesis, proteins and pathways.

2006

Contains fulltext : 50437.pdf (Publisher’s version ) (Closed access) Usher syndrome is the most common form of deaf-blindness. The syndrome is both clinically and genetically heterogeneous, and to date, eight causative genes have been identified. The proteins encoded by these genes are part of a dynamic protein complex that is present in hair cells of the inner ear and in photoreceptor cells of the retina. The localization of the Usher proteins and the phenotype in animal models indicate that the Usher protein complex is essential in the morphogenesis of the stereocilia bundle in hair cells and in the calycal processes of photoreceptor cells. In addition, the Usher proteins are important in…

Genetics and epigenetic pathways of disease [NCMLS 6]Usher syndromeCell Cycle ProteinsNerve Tissue ProteinsBiologyRetinaAdherens junctionMiceHair Cells AuditoryCell polarityGeneticsmedicineotorhinolaryngologic diseasesNeurosensory disorders [UMCN 3.3]AnimalsHumansProtein IsoformsCell Cycle ProteinMolecular BiologyGenetics (clinical)Renal disorder [IGMD 9]Adaptor Proteins Signal TransducingStereociliumMembrane ProteinsSignal transducing adaptor proteinGeneral MedicineActin cytoskeletonmedicine.diseaseeye diseasesCell biologyCytoskeletal ProteinsGenetic defects of metabolism [UMCN 5.1]Ear InnerMultiprotein ComplexesCateninSynapsessense organsUsher SyndromesPhotoreceptor Cells Vertebrate
researchProduct

Usher syndrome and Leber congenital amaurosis are molecularly linked via a novel isoform of the centrosomal ninein-like protein.

2009

Contains fulltext : 80984.pdf (Publisher’s version ) (Closed access) Usher syndrome (USH) and Leber congenital amaurosis (LCA) are autosomal recessive disorders resulting in syndromic and non-syndromic forms of blindness. In order to gain insight into the pathogenic mechanisms underlying retinal degeneration, we searched for interacting proteins of USH2A isoform B (USH2A(isoB)) and the LCA5-encoded protein lebercilin. We identified a novel isoform of the centrosomal ninein-like protein, hereby named Nlp isoform B (Nlp(isoB)), as a common interactor. Although we identified the capacity of this protein to bind calcium with one of its three EF-hand domains, the interacton with USH2A(isoB) did …

Gene isoformRetinal degenerationCandidate geneGenetics and epigenetic pathways of disease [NCMLS 6]Usher syndromeMolecular Sequence DataOptic Atrophy Hereditary LeberBiologyIn Vitro TechniquesNeuroinformatics [DCN 3]CiliopathiesRetinaCell LineMiceCiliogenesisTwo-Hybrid System TechniquesGeneticsmedicineotorhinolaryngologic diseasesAnimalsHumansProtein IsoformsPhotoreceptor CellsAmino Acid SequenceNuclear proteinRats WistarEye ProteinsMolecular BiologyGenetics (clinical)GeneticsExtracellular Matrix ProteinsCiliumNuclear ProteinsGeneral MedicineArticlesmedicine.diseaseRatsMice Inbred C57BLMicrotubule-Associated ProteinsSequence AlignmentUsher SyndromesFunctional Neurogenomics [DCN 2]Protein BindingHuman Molecular Genetics
researchProduct

Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina

2011

Contains fulltext : 96822.pdf (Publisher’s version ) (Closed access) The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically heterogeneous with at least 11 chromosomal loci assigned to 3 clinical types, USH1-3. We have previously demonstrated that all USH1 and 2 proteins in the eye and the inner ear are organized into protein networks by scaffold proteins. This has contributed essentially to our current understanding of the function of USH proteins and explains why defects in proteins of different families cause very similar phenotypes. We have previously shown that the USH1G protein SANS (scaffold protein containing ankyrin repeat…

Scaffold proteinUsher syndromePhosphodiesterase 4D interacting protein (PDE4DIP)Muscle ProteinsPlasma protein bindingMice0302 clinical medicineYeastsChlorocebus aethiopsNuclear proteinCells CulturedGenetics0303 health scienceseducation.field_of_studyNuclear ProteinsCell biologyCOS CellssymbolsPhotoreceptor Cells VertebrateProtein BindingMicrotubule based transportNerve Tissue ProteinsBiologyModels BiologicalRetina03 medical and health sciencessymbols.namesakemedicineAnimalsHumanseducationMolecular BiologyAdaptor Proteins Signal Transducing030304 developmental biologyCell BiologyGlycostation disorders [IGMD 4]Golgi apparatusmedicine.diseaseMacaca mulattaMice Inbred C57BLCytoskeletal ProteinsPhotoreceptor cell functionMyomegalinGenetics and epigenetic pathways of disease Functional Neurogenomics [NCMLS 6]CattleAnkyrin repeatCiliary baseIntracellular transport030217 neurology & neurosurgerySensorineuronal degeneration
researchProduct

PDZD7 connects the Usher protein complex to the intraflagellar transport machinery

2015

Several Usher syndrome (USH)-associated proteins are known to localize to the connecting cilium of photoreceptor cells. The unconventional myosin MYO7A (USH1B) was long accepted as the transport molecule responsible for the ciliary localization of USH proteins. However, based on the typical location of several of the USH proteins along the ciliary axoneme, the involvement of the main ciliary trafficking machinery, intraflagellar transport (IFT), seems apparent. The USH-associated scaffold protein PDZD7 is known to interact with SANS, Usherin, GPR98 and Whirlin, all of which can be found in the connecting cilium. Here, we report that PDZD7 provides the physical link of the USH-protein networ…

AxonemeTandem affinity purificationGeneticsScaffold proteinMYO7ACell BiologyBiologyPhotoreceptor cellCell biologymedicine.anatomical_structureIntraflagellar transportMyosinPoster PresentationmedicineBasal bodysense organsCilia
researchProduct

CiliaCarta: An integrated and validated compendium of ciliary genes

2019

The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse…

ProteomicsSensory ReceptorsNematodaSocial SciencesCiliopathiesBiochemistrySensory disorders Donders Center for Medical Neuroscience [Radboudumc 12]Transcriptome0302 clinical medicineAnimal CellsPsychologyRETINAL PHOTORECEPTOR CELLSExomeNeurons0303 health sciences030302 biochemistry & molecular biologyEukaryotaGenomicsPRIMARY CILIUMthecilium3. Good healthNucleic acidsGenetic interferenceOsteichthyesMedicineEpigeneticsCellular Structures and OrganellesCellular Typesproteomic databasesSensory Receptor CellsScienceeducationCiliary genesLEBER CONGENITAL AMAUROSISGenomics03 medical and health sciencesGeneticsCiliaCaenorhabditis elegansIDENTIFICATIONMUTATIONSEmbryosciliaOrganismsBiology and Life SciencesBayes TheoremMolecular Sequence Annotationmedicine.diseaseInvertebratesFishciliary proteomeAnimal StudiesCaenorhabditisGene expressionembryos030217 neurology & neurosurgeryDevelopmental BiologyNeurosciencePhotoreceptorsCandidate geneEmbryologyOligonucleotidesMorpholinoDatabase and Informatics MethodsRNA interferenceBayesian classifierTRANSITION ZONEZebrafishAntisense OligonucleotidesZebrafishGeneticsMultidisciplinarySpectrometric Identification of ProteinsProteomic DatabasesNucleotidesCiliumQStable Isotope Labeling by Amino Acids in Cell CultureRphotoreceptorsMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]Animal ModelsPhenotypeINTRAFLAGELLAR TRANSPORTDIFFERENTIATIONPhenotypeExperimental Organism SystemsCaenorhabditis ElegansVertebratesSensory PerceptionResearch ArticleSignal TransductionEXPRESSIONStable isotope labeling by amino acids in cell cultureComputational biologyBiologyResearch and Analysis MethodsSOLUTE-CARRIER-PROTEINModel OrganismsmedicineAnimalsdata integration030304 developmental biologyAfferent NeuronsReproducibility of ResultsCell Biologyzebrafishbiology.organism_classificationCiliopathyRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]Biological DatabasesCellular NeuroscienceRNAOSCP1CiliaCartaPLoS ONE
researchProduct

MPP1 links the Usher protein network and the Crumbs protein complex in the retina.

2007

Contains fulltext : 53571.pdf (Publisher’s version ) (Closed access) The highly ordered distribution of neurons is an essential feature of a functional mammalian retina. Disruptions in the apico-basal polarity complexes at the outer limiting membrane (OLM) of the retina are associated with retinal patterning defects in vertebrates. We have analyzed the binding repertoire of MPP5/Pals1, a key member of the apico-basal Crumbs polarity complex, that has functionally conserved counterparts in zebrafish (nagie oko) and Drosophila (Stardust). We show that MPP5 interacts with its MAGUK family member MPP1/p55 at the OLM. Mechanistically, this interaction involves heterodimerization of both MAGUK mo…

Scaffold proteinanimal structuresGenetics and epigenetic pathways of disease [NCMLS 6]BioinformaticsPDZ domainMolecular Sequence DataMice TransgenicNerve Tissue ProteinsNeuroinformatics [DCN 3]Models BiologicalRetinaMiceTwo-Hybrid System TechniquesCell polarityPerception and Action [DCN 1]GeneticsNeurosensory disorders [UMCN 3.3]Basal bodyAnimalsHumansAmino Acid SequenceRats WistarEye ProteinsMolecular BiologyZebrafishGenetics (clinical)ActinRenal disorder [IGMD 9]GeneticsExtracellular Matrix ProteinsBinding SitesbiologyModels GeneticCell MembraneMembrane ProteinsGeneral MedicineBlood Proteinsbiology.organism_classificationEmbryo MammalianCell biologyProtein Structure TertiaryRatsGenetic defects of metabolism [UMCN 5.1]Eye disordersense organsCellular energy metabolism [UMCN 5.3]Nucleoside-Phosphate KinaseFunctional Neurogenomics [DCN 2]Neural developmentHuman Molecular Genetics
researchProduct

Association of Whirlin with Cav1.3 (α1D) Channels in Photoreceptors, Defining a Novel Member of the Usher Protein Network

2010

Contains fulltext : 88383.pdf (Publisher’s version ) (Closed access) PURPOSE: Usher syndrome is the most common form of hereditary deaf-blindness. It is both clinically and genetically heterogeneous. The USH2D protein whirlin interacts via its PDZ domains with other Usher-associated proteins containing a C-terminal type I PDZ-binding motif. These proteins co-localize with whirlin at the region of the connecting cilium and at the synapse of photoreceptor cells. This study was undertaken to identify novel, Usher syndrome-associated, interacting partners of whirlin and thereby obtain more insights into the function of whirlin. METHODS: The database of ciliary proteins was searched for proteins…

Genetics and epigenetic pathways of disease [NCMLS 6]Calcium Channels L-TypeUsher syndromeProtein subunitImmunoelectron microscopyBlotting WesternPDZ domainRetinaCav1.3MiceTwo-Hybrid System TechniquesChlorocebus aethiopsmedicineAnimalsInner earRNA MessengerRats WistarDatabases ProteinMicroscopy ImmunoelectronPhotoreceptor Connecting CiliumIn Situ HybridizationRenal disorder [IGMD 9]RetinaVoltage-dependent calcium channelbiologyComputational BiologyMembrane Proteinsmedicine.diseaseeye diseasesRatsCell biologyMice Inbred C57BLmedicine.anatomical_structureCOS Cellsbiology.proteinsense organsFunctional Neurogenomics [DCN 2]Photoreceptor Cells VertebrateInvestigative Opthalmology & Visual Science
researchProduct

Usherin defects lead to early-onset retinal dysfunction in zebrafish

2018

Mutations in USH2A are the most frequent cause of Usher syndrome and autosomal recessive nonsyndromic retinitis pigmentosa. To unravel the pathogenic mechanisms underlying USH2A-associated retinal degeneration and to evaluate future therapeutic strategies that could potentially halt the progression of this devastating disorder, an animal model is needed. The available Ush2a knock-out mouse model does not mimic the human phenotype, because it presents with only a mild and late-onset retinal degeneration. Using CRISPR/Cas9-technology, we introduced protein-truncating germline lesions into the zebrafish ush2a gene (ush2a(rmc1): c.2337_2342delinsAC; p.Cys780GlnfsTer32 and ush2a(b1245): c.15520_…

0301 basic medicineRetinal degenerationGenotyping TechniquesUsher syndrome2804 Cellular and Molecular NeuroscienceApoptosis030105 genetics & heredityBiologyArticleRetinaGermlineSensory disorders Donders Center for Medical Neuroscience [Radboudumc 12]Gene Knockout Techniques03 medical and health sciencesCellular and Molecular NeuroscienceUSH2 complex2809 Sensory SystemsAll institutes and research themes of the Radboud University Medical CenterRetinitis pigmentosaElectroretinographymedicineotorhinolaryngologic diseasesJournal ArticleAnimalsMicroscopy ImmunoelectronZebrafishZebrafishExtracellular Matrix ProteinsRetinal DegenerationMembrane ProteinsZebrafish ProteinsRetinal Photoreceptor Cell Outer Segmentmedicine.diseasebiology.organism_classification2731 OphthalmologySensory Systems10124 Institute of Molecular Life SciencesCell biologyDisease Models AnimalOphthalmology030104 developmental biologyGene Expression RegulationEctodomainMutation570 Life sciences; biologyXenotropic and Polytropic Retrovirus ReceptorUsher SyndromesErg
researchProduct

Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2.

2005

Contains fulltext : 48386.pdf (Publisher’s version ) (Closed access) Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. USH is clinically and genetically heterogeneous with at least 11 chromosomal loci assigned to the three USH types (USH1A-G, USH2A-C, USH3A). Although the different USH types exhibit almost the same phenotype in human, the identified USH genes encode for proteins which belong to very different protein classes and families. We and others recently reported that the scaffold protein harmonin (USH1C-gene product) integrates all identified USH1 molecules in a USH1-protein network. Here, we investigated the relationship between the USH2 molecules a…

Scaffold proteinGenetics and epigenetic pathways of disease [NCMLS 6]Usher syndromeStereocilia (inner ear)Cell Cycle ProteinsBiologyInteractomeReceptors G-Protein-CoupledMiceotorhinolaryngologic diseasesGeneticsmedicineAnimalsNeurosensory disorders [UMCN 3.3]Photoreceptor CellsRats WistarMolecular BiologyGeneGenetics (clinical)Renal disorder [IGMD 9]GeneticsExtracellular Matrix ProteinsStereociliumBinding SitesHair Cells Auditory InnerSodium-Bicarbonate SymportersUsher Syndrome Type 1General Medicinemedicine.diseasePhenotypeRatsMice Inbred C57BLCytoskeletal ProteinsCarrier ProteinsUsher Syndromes
researchProduct

SYSCILIA, “A systems biology approach to dissect cilia function and its disruption in human genetic disease”

2012

Primary cilia are basically signaling hubs, harboring amongst others the noncanonical WNT, Hedgehog,and PDGF signaling systems, and their disruption leads to striking developmental defects. Some ciliopathy-associated proteins have recently been revealed to be physically or functionally associated in several distinct groupings, with limited connections to other crucial biological processes. Early proteomics studies have also suggested a discrete repertoire of about 1000 proteins within the organelle (i.e. <5% of the proteome) that are still in need of organisation into pathways and networks. Small, relatively isolated systems are often targeted by systems biology approaches under the assumpt…

Systems biologyCiliumProteomePoster PresentationWnt signaling pathwayCell BiologyComputational biologyBiologyProteomicsDevelopmental biologyHedgehogHuman geneticsCell biologyCilia
researchProduct

Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis.

2014

Item does not contain fulltext The human Usher syndrome (USH) is a complex ciliopathy with at least 12 chromosomal loci assigned to three clinical subtypes, USH1-3. The heterogeneous USH proteins are organized into protein networks. Here, we identified Magi2 (membrane-associated guanylate kinase inverted-2) as a new component of the USH protein interactome, binding to the multifunctional scaffold protein SANS (USH1G). We showed that the SANS-Magi2 complex assembly is regulated by the phosphorylation of an internal PDZ-binding motif in the sterile alpha motif domain of SANS by the protein kinase CK2. We affirmed Magi2's role in receptor-mediated, clathrin-dependent endocytosis and showed tha…

Scaffold proteinGuanylate kinaseMolecular Sequence DataPrimary Cell CultureNerve Tissue ProteinsBiologyEndocytosisPhotoreceptor cellExocytosisMiceCiliogenesisGeneticsmedicineAnimalsHumansProtein Interaction Domains and MotifsAmino Acid SequencePhosphorylationRNA Small InterferingSensory disorders Radboud Institute for Molecular Life Sciences [Radboudumc 12]Molecular BiologyGenetics (clinical)Adaptor Proteins Signal TransducingBinding SitesGeneral MedicineClathrinEndocytosisCell biologyMice Inbred C57BLRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]medicine.anatomical_structureHEK293 CellsGene Expression RegulationCiliary pocketCarrier ProteinsSterile alpha motifGuanylate KinasesSequence AlignmentUsher SyndromesPhotoreceptor Cells VertebrateProtein BindingSignal TransductionHuman molecular genetics
researchProduct

A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells.

2008

Contains fulltext : 69178.pdf (Publisher’s version ) (Closed access) The human Usher syndrome (USH) is the most frequent cause of combined deaf-blindness. USH is genetically heterogeneous with at least 12 chromosomal loci assigned to three clinical types, USH1-3. Although these USH types exhibit similar phenotypes in human, the corresponding gene products belong to very different protein classes and families. The scaffold protein harmonin (USH1C) was shown to integrate all identified USH1 and USH2 molecules into protein networks. Here, we analyzed a protein network organized in the absence of harmonin by the scaffold proteins SANS (USH1G) and whirlin (USH2D). Immunoelectron microscopic anal…

Scaffold proteinGenetics and epigenetic pathways of disease [NCMLS 6]XenopusCell Cycle ProteinsNerve Tissue ProteinsBiologyIn Vitro TechniquesNeuroinformatics [DCN 3]TransfectionModels BiologicalReceptors G-Protein-CoupledMiceChlorocebus aethiopsProtein Interaction MappingGeneticsPerception and Action [DCN 1]otorhinolaryngologic diseasesAnimalsHumansNeurosensory disorders [UMCN 3.3]Cell Cycle ProteinMicroscopy ImmunoelectronMolecular BiologyIntegral membrane proteinGenetics (clinical)Adaptor Proteins Signal TransducingRenal disorder [IGMD 9]GeneticsMice KnockoutExtracellular Matrix ProteinsCiliumSignal transducing adaptor proteinMembrane ProteinsGeneral MedicineTransmembrane proteinCell biologyMice Inbred C57BLCytoskeletal ProteinsEctodomainGenetic defects of metabolism [UMCN 5.1]COS CellsNIH 3T3 CellsCervical collarUsher SyndromesFunctional Neurogenomics [DCN 2]Photoreceptor Cells VertebrateSubcellular FractionsImmunity infection and tissue repair [NCMLS 1]
researchProduct

A novel DFNB1 deletion allele supports the existence of a distant cis-regulatory region that controls GJB2 and GJB6 expression

2010

Contains fulltext : 87760_1.pdf (author's version ) (Open Access) Contains fulltext : 87760_2.pdf (Publisher’s version ) (Closed access) Eleven affected members of a large German-American family segregating recessively inherited, congenital, non-syndromic sensorineural hearing loss (SNHL) were found to be homozygous for the common 35delG mutation of GJB2, the gene encoding the gap junction protein Connexin 26. Surprisingly, four additional family members with bilateral profound SNHL carried only a single 35delG mutation. Previously, we demonstrated reduced expression of both GJB2 and GJB6 mRNA from the allele carried in trans with that bearing the 35delG mutation in these four persons. Usin…

MaleGenetics and epigenetic pathways of disease [NCMLS 6][SDV]Life Sciences [q-bio]PenetranceMESH: Base SequenceRegulatory Sequences Nucleic Acidsensorineural hearing lossConnexinsMESH: GenotypeMESH: Hearing Loss Sensorineural/diagnosisMESH: PenetranceGenotypeCopy-number variationGenetics (clinical)Sequence DeletionGeneticsComparative Genomic Hybridization0303 health sciencesMESH: Genetic TestingMESH: Gene Expression Regulation*030305 genetics & heredityPenetranceGJB2PedigreeConnexin 26MESH: Sequence Deletion*MESH: Hearing Loss Sensorineural/geneticsFemaleChromosome DeletionFunctional Neurogenomics [DCN 2]GJB6GenotypeMESH: PedigreeMESH: Chromosome DeletionHearing Loss SensorineuralMolecular Sequence Dataconnexin 26connexin 30DFNB1gene expression regulationGJB2GJB6sensorineural hearing losssequence deletionBiologyMESH: Connexin 30MESH: Connexins/genetics*MESH: Sequence Homology Nucleic AcidArticleGenomic disorders and inherited multi-system disorders [IGMD 3]03 medical and health sciencesMonoallelic MutationGJB6MESH: Connexin 26Sequence Homology Nucleic AcidConnexin 30otorhinolaryngologic diseasesGeneticsHumansGenetic TestingAlleleGeneMESH: Regulatory Sequences Nucleic Acid/genetics*AllelesDFNB1030304 developmental biologyFamily HealthMESH: HumansMESH: Molecular Sequence DataBase SequenceChromosomes Human Pair 13MESH: AllelesBreakpointMESH: MaleMESH: Comparative Genomic HybridizationGene Expression RegulationMESH: Family Healthbiology.proteinHuman medicineMESH: Chromosomes Human Pair 13/geneticsMESH: FemaleClinical Genetics
researchProduct

Naturally occurring testis-specific histone H3 antisense transcripts inDrosophila

1997

While analysing the transcription of the cluster of cell-cycle regulated histone genes in Drosophila hydei, we have found transcripts spanned both histone H3 and H4 genes and were antisense for histone H3. As the two histone genes are in opposite orientation, these transcripts contained the sense strand of the histone H4 gene. Such transcripts were present in both poly(A) + and poly(A) - RNA fractions. The polyadenylated molecules contained a poly(A) tail at the 3' end of the stem-loop structure, which is characteristic for cell-cycle regulated histone mRNAs. The antisense RNA of histone H3 is synthesized exclusively in testes. By developing an improved protocol of in situ hybridization to …

Histone H4Histone H3Histone H1Histone methyltransferaseHistone methylationHistone H2AGeneticsCell BiologyBiologySAP30Molecular biologyDevelopmental BiologyAntisense RNAMolecular Reproduction and Development
researchProduct

The mitotic spindle protein SPAG5/Astrin connects to the Usher protein network postmitotically

2011

Abstract Background Mutations in the gene for Usher syndrome 2A (USH2A) are causative for non-syndromic retinitis pigmentosa and Usher syndrome, a condition that is the most common cause of combined deaf-blindness. To gain insight into the molecular pathology underlying USH2A-associated retinal degeneration, we aimed to identify interacting proteins of USH2A isoform B (USH2AisoB) in the retina. Results We identified the centrosomal and microtubule-associated protein sperm-associated antigen (SPAG)5 in the retina. SPAG5 was also found to interact with another previously described USH2AisoB interaction partner: the centrosomal ninein-like protein NINLisoB. Using In situ hybridization, we foun…

Retinal degenerationGenetics and epigenetic pathways of disease [NCMLS 6]Usher syndromeBiologyPhotoreceptor cell03 medical and health sciences0302 clinical medicineMicrotubuleEvaluation of complex medical interventions Genomic disorders and inherited multi-system disorders [NCEBP 2]Retinitis pigmentosamedicineotorhinolaryngologic diseasesBasal bodylcsh:QH573-671Ganglion cell layer030304 developmental biologyGenetics0303 health sciencesRetinalcsh:CytologyResearchPathogenesis and modulation of inflammation Infection and autoimmunity [N4i 1]Cell Biologymedicine.diseaseGenetics and epigenetic pathways of disease Plasticity and memory [NCMLS 6]eye diseasesCell biologyGenetics and epigenetic pathways of disease DCN MP - Plasticity and memory [NCMLS 6]medicine.anatomical_structure030220 oncology & carcinogenesissense organs
researchProduct

Zebrafish as a Model to Evaluate a CRISPR/Cas9-Based Exon Excision Approach as a Future Treatment Option for EYS-Associated Retinitis Pigmentosa

2021

Retinitis pigmentosa (RP) is an inherited retinal disease (IRD) with an overall prevalence of 1 in 4000 individuals. Mutations in EYS (Eyes shut homolog) are among the most frequent causes of non-syndromic autosomal recessively inherited RP and act via a loss-of-function mechanism. In light of the recent successes for other IRDs, we investigated the therapeutic potential of exon skipping for EYS-associated RP. CRISPR/Cas9 was employed to generate zebrafish from which the region encompassing the orthologous exons 37-41 of human EYS (eys exons 40-44) was excised from the genome. The excision of these exons was predicted to maintain the open reading frame and to result in the removal of exactl…

QH301-705.5CatalysisSensory disorders Donders Center for Medical Neuroscience [Radboudumc 12]ArticleInorganic ChemistryExonAll institutes and research themes of the Radboud University Medical CenterEYSProtein Domainsretinitis pigmentosaRetinitis pigmentosamedicineCRISPRCoding regionAnimals<i>EYS</i>Biology (General)Physical and Theoretical ChemistryOuter nuclear layerEye ProteinsQD1-999Molecular BiologyZebrafishCRISPR/Cas9SpectroscopyGeneticsexon skipping therapybiologyOrganic ChemistryphotoreceptorsGeneral MedicineExonsGenetic TherapyZebrafish Proteinsmedicine.diseasebiology.organism_classificationzebrafishExon skippingComputer Science ApplicationsChemistryOpen reading frameDisease Models Animalmedicine.anatomical_structurePhenotypeCRISPR-Cas Systemsantisense oligonucleotidesInternational Journal of Molecular Sciences
researchProduct

KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

2015

Background Joubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures. Results Using autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome. Patient-derived fibroblasts displayed reduced ciliogenesis potential and abnormally elongated cilia. Investigation of disease pathophysiology revealed that Kiaa0556-/- null mice possess…

AdultMaleK04F10.2KIAA0556MicrotubuleMicrotubulesRetinaMiceJoubert syndromeCerebellumAnimalsHumansAbnormalities MultipleExomeCiliaEye AbnormalitiesSensory disorders Radboud Institute for Molecular Life Sciences [Radboudumc 12]Caenorhabditis elegansChildCells CulturedAdenosine TriphosphatasesADP-Ribosylation FactorsResearchBrainMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]Kidney Diseases CysticBasal BodiesPedigreeMice Inbred C57BLRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]Basal bodyChild PreschoolMutationFemaleKataninMicrotubule-Associated ProteinsProtein BindingGenome Biology
researchProduct

An organelle-specific protein landscape identifies novel diseases and molecular mechanisms.

2016

Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub…

Proteomics0301 basic medicineSystems AnalysisDNA Mutational Analysislnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]General Physics and AstronomyDatasets as Topicmethods [Chromatography Affinity]ProteomicsSensory disorders Donders Center for Medical Neuroscience [Radboudumc 12]Chromatography AffinityMass SpectrometryProtein Interaction Mappingtherapy [Ciliopathies]genetics [Ciliopathies]methods [Molecular Targeted Therapy]Molecular Targeted TherapyProtein Interaction MapsMultidisciplinaryCiliumChemistry (all)Qabnormalities [Spine]pathology [Ciliopathies]genetics [Muscle Hypotonia]therapy [Muscle Hypotonia]Metabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]metabolism [Proteins]isolation & purification [Proteins]physiology [Biological Transport]3. Good healthCell biologyVesicular transport proteinpathology [Dwarfism]metabolism [Cilia]Muscle Hypotoniaddc:500pathology [Muscle Hypotonia]pathology [Spine]genetics [Dwarfism]Rare cancers Radboud Institute for Health Sciences [Radboudumc 9]ScienceDwarfismExocystBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyPhysics and Astronomy (all)03 medical and health sciencesIntraflagellar transportCiliogenesisOrganelleHumansCiliaBiochemistry Genetics and Molecular Biology (all)ProteinsBiological TransportGeneral Chemistrytherapy [Dwarfism]Fibroblastsgenetics [Proteins]CiliopathiesSpinemethods [Protein Interaction Mapping]Renal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]030104 developmental biologyProteostasisHEK293 Cellsmethods [Proteomics]
researchProduct

Additional file 1: of KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

2015

The phylogenetic distribution and sequence conservation of KIAA0556 orthologs in eukaryotes. Presence and sequence conservation of KIAA0556 are projected on the eukaryotic species tree to visualise the phylogenetic distribution of KIAA0556 orthologues as well as the distribution of the triple-repeat and quadruple-repeat configurations of the DUF4457 domains of unknown function. The black circles and white circles indicate which eukaryotic species contain or lack cilia/flagella. Recent KIAA0556 duplicates in Branchiostoma floridae and Paramecium tetraurelia are denoted by x2. *Dictyostelium discoideum protein sequence contains many â Nâ s (uncalled bases) in the N-terminal part of the sequen…

14. Life underwater
researchProduct

Additional file 1: of KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

2015

The phylogenetic distribution and sequence conservation of KIAA0556 orthologs in eukaryotes. Presence and sequence conservation of KIAA0556 are projected on the eukaryotic species tree to visualise the phylogenetic distribution of KIAA0556 orthologues as well as the distribution of the triple-repeat and quadruple-repeat configurations of the DUF4457 domains of unknown function. The black circles and white circles indicate which eukaryotic species contain or lack cilia/flagella. Recent KIAA0556 duplicates in Branchiostoma floridae and Paramecium tetraurelia are denoted by x2. *Dictyostelium discoideum protein sequence contains many â Nâ s (uncalled bases) in the N-terminal part of the sequen…

14. Life underwater
researchProduct

Additional file 6: of KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

2015

Results of the SF-TAP analysis with over-expressed N-terminally SF-TAP-tagged KIAA0556 in HEK293T cells. Shown is the number of unique identified peptides as well as the sequence coverage for each protein detected by mass spectrometry. Proteins identified in &gt;1 out 17 SF-TAP control experiments (empty vector) were removed. (XLSX 28 kb)

researchProduct

Additional file 4: of KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

2015

IFT analysis in C. elegans K04F10.2( tm1830 ) mutants. a Intraflagellar transport rates in wild-type and K04F10.2(tm1830) mutant worms. Shown are the anterograde and retrograde velocities (μm.s-1/standard deviation (SD)) of GFP-tagged IFT proteins along amphid and phasmid channel cilia (combined; top rows), or phasmid cilia only (bottom rows). t-test pairwise comparison with wild-type controls, n number of particles, N measured number of amphids and phasmids. OSM-3 is the worm orthologue of KIF17; CHE-11 is the worm orthologue of IFT140; OSM-6 is the worm orthologue of IFT52. b Representative fluorescence images of phasmid cilia showing normal IFT protein localisations and distributions in …

researchProduct

Additional file 8: of KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

2015

Post-embryonic tissue expression of C. elegans katanin genes mei-1 , mei-2 and F47G4.4. Shown are fluorescence images of worms expressing a transcriptional GFP reporter under the control of the indicated geneâ s promoter, which stains the entire cell in which it is expressed. DiI (red) co-stain identifies six pairs of ciliated amphid neurons and both pairs of ciliated phasmid neurons. Arrowheads denote cells with both red and green signals. Other ciliated head cells are identifiable by long dendritic processes (arrows) extending to the anterior end of the worm. Scale bars, 20Â Îźm (all images similarly scaled). (JPG 611 kb)

researchProduct

Additional file 2: of KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

2015

Alignment of IFT25 with permutated KIAA0556 repeat sequences. When aligned using HHpred, a significant part of the Chlamydomonas IFT25 N-terminus was unmatched with human KIAA0556 and significant sequence remained at the C-terminus of the repeats, suggesting a circular permutation relationship between the repeats and IFT25. Shown is a HHpred alignment of IFT25 orthologues with permutated repeat sequences (r1–4) from KIAA0556 orthologues, which results in improved sequence matches. In each permutated repeat sequence, 30–40 amino acids from the beginning of each repeat have been added to the end of the same repeat (denoted by red box) using manual editing. The precise number of amino acids tr…

researchProduct

Additional file 3: of KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

2015

Ciliary phenotypes that are unaffected in C. elegans K04F10.2( tm1830 ) mutants. a K04F10.2 mutants possess normal fluorescent dye (DiI) filling in amphid (head) and phasmid (tail) neurons. Scale bars, 15 μm. b The lengths and morphologies of various sensory neuronal cilia are normal in K04F10.2 mutants. Shown are fluorescence images of cilia from worms expressing str-1p::GFP (AWB neuron), gcy-5p::GFP (ASER neuron) and OSM-6::GFP (PHA/B neurons) transgenes. Numbers (± standard error of the mean) refer to cilium lengths. Scale bars, 2 μm. c–e K04F10.2 mutants possess normal sensory benzaldehyde chemoattraction (n = 10), osmotic avoidance (n = 10), and foraging/roaming (n = 34) behaviours. ch…

fungi
researchProduct

Additional file 7: of KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

2015

Supplementary information to the data in Fig. 8 . a Schematic representation of all the different KIAA0556 fragments used to screen our selection of 200+ ciliary proteins. The predicted protein repeat domains, shown in Additional files 1 and 2, are depicted as d1 to d4. Constructs were generated containing isolated domains as well as a combination of domains. b Single transfections of PalMyr-KIAA0556 and mRFP-KATNBL1, showing that membrane localisation of the mRFP tagged protein is indeed dependent on the interaction with the PalMyr-tagged protein. (JPG 491 kb)

researchProduct

Additional file 5: of KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

2015

Data supplementary to the nocodazole destabilization assay shown in Fig. 7 . a, b Replicate images of DMSO or nocodazole-treated hTERT-RPE1 cells. Cells were transfected with SF-TAP-tagged KIAA0556 (detected with anti-FLAG immunostaining; green) or GFP-KIAA0556 and counterstained with anti-acetylated tubulin (red) and DAPI (blue). Cells with high KIAA0556 expression are characterised by a filamentous staining pattern and spots of accumulated KIAA0556 signal. In non-transfected cells, 10 minute nocodazole treatment resulted in the loss of a stabilised MT network (see especially the high exposure images), as judged by loss of (almost) all cytoplasmic acetylated tubulin staining and/or the abs…

embryonic structuresfungi
researchProduct