0000000001103909
AUTHOR
Gunther Uhlmann
Optimality of Increasing Stability for an Inverse Boundary Value Problem
In this work we study the optimality of increasing stability of the inverse boundary value problem (IBVP) for the Schrödinger equation. The rigorous justification of increasing stability for the IBVP for the Schrödinger equation were established by Isakov [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and by Isakov et al. [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141]. In [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141], the authors showed that the stability of this IBVP increases …
Geometric Inverse Problems
This up-to-date treatment of recent developments in geometric inverse problems introduces graduate students and researchers to an exciting area of research. With an emphasis on the two-dimensional case, topics covered include geodesic X-ray transforms, boundary rigidity, tensor tomography, attenuated X-ray transforms and the Calderón problem. The presentation is self-contained and begins with the Radon transform and radial sound speeds as motivating examples. The required geometric background is developed in detail in the context of simple manifolds with boundary. An in-depth analysis of various geodesic X-ray transforms is carried out together with related uniqueness, stability, reconstruc…
The Calderón problem for the fractional Schrödinger equation
We show global uniqueness in an inverse problem for the fractional Schr\"odinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where the measurements are taken in arbitrary open, possibly disjoint, subsets of the exterior. The results apply in any dimension $\geq 2$ and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calder\'on problem.
The geodesic X-ray transform with matrix weights
Consider a compact Riemannian manifold of dimension $\geq 3$ with strictly convex boundary, such that the manifold admits a strictly convex function. We show that the attenuated ray transform in the presence of an arbitrary connection and Higgs field is injective modulo the natural obstruction for functions and one-forms. We also show that the connection and the Higgs field are uniquely determined by the scattering relation modulo gauge transformations. The proofs involve a reduction to a local result showing that the geodesic X-ray transform with a matrix weight can be inverted locally near a point of strict convexity at the boundary, and a detailed analysis of layer stripping arguments ba…
Uniqueness and reconstruction for the fractional Calder\'on problem with a single measurement
We show global uniqueness in the fractional Calder\'on problem with a single measurement and with data on arbitrary, possibly disjoint subsets of the exterior. The previous work \cite{GhoshSaloUhlmann} considered the case of infinitely many measurements. The method is again based on the strong uniqueness properties for the fractional equation, this time combined with a unique continuation principle from sets of measure zero. We also give a constructive procedure for determining an unknown potential from a single exterior measurement, based on constructive versions of the unique continuation result that involve different regularization schemes.
Inverse problems for real principal type operators
We consider inverse boundary value problems for general real principal type differential operators. The first results state that the Cauchy data set uniquely determines the scattering relation of the operator and bicharacteristic ray transforms of lower order coefficients. We also give two different boundary determination methods for general operators, and prove global uniqueness results for determining coefficients in nonlinear real principal type equations. The article presents a unified approach for treating inverse boundary problems for transport and wave equations, and highlights the role of propagation of singularities in the solution of related inverse problems.
Tensor tomography in periodic slabs
The X-ray transform on the periodic slab $[0,1]\times\mathbb T^n$, $n\geq0$, has a non-trivial kernel due to the symmetry of the manifold and presence of trapped geodesics. For tensor fields gauge freedom increases the kernel further, and the X-ray transform is not solenoidally injective unless $n=0$. We characterize the kernel of the geodesic X-ray transform for $L^2$-regular $m$-tensors for any $m\geq0$. The characterization extends to more general manifolds, twisted slabs, including the M\"obius strip as the simplest example.
Tensor tomography in periodic slabs
Abstract The X-ray transform on the periodic slab [ 0 , 1 ] × T n , n ≥ 0 , has a non-trivial kernel due to the symmetry of the manifold and presence of trapped geodesics. For tensor fields gauge freedom increases the kernel further, and the X-ray transform is not solenoidally injective unless n = 0 . We characterize the kernel of the geodesic X-ray transform for L 2 -regular m -tensors for any m ≥ 0 . The characterization extends to more general manifolds, twisted slabs, including the Mobius strip as the simplest example.
On the scientific work of Victor Isakov
On the range of the attenuated ray transform for unitary connections
We describe the range of the attenuated ray transform of a unitary connection on a simple surface acting on functions and 1-forms. We use this to determine the range of the ray transform acting on symmetric tensor fields.
Invariant distributions, Beurling transforms and tensor tomography in higher dimensions
In the recent articles \cite{PSU1,PSU3}, a number of tensor tomography results were proved on two-dimensional manifolds. The purpose of this paper is to extend some of these methods to manifolds of any dimension. A central concept is the surjectivity of the adjoint of the geodesic ray transform, or equivalently the existence of certain distributions that are invariant under geodesic flow. We prove that on any Anosov manifold, one can find invariant distributions with controlled first Fourier coefficients. The proof is based on subelliptic type estimates and a Pestov identity. We present an alternative construction valid on manifolds with nonpositive curvature, based on the fact that a natur…
Spectral rigidity and invariant distributions on Anosov surfaces
This article considers inverse problems on closed Riemannian surfaces whose geodesic flow is Anosov. We prove spectral rigidity for any Anosov surface and injectivity of the geodesic ray transform on solenoidal 2-tensors. We also establish surjectivity results for the adjoint of the geodesic ray transform on solenoidal tensors. The surjectivity results are of independent interest and imply the existence of many geometric invariant distributions on the unit sphere bundle. In particular, we show that on any Anosov surface $(M,g)$, given a smooth function $f$ on $M$ there is a distribution in the Sobolev space $H^{-1}(SM)$ that is invariant under the geodesic flow and whose projection to $M$ i…
The higher order fractional Calderón problem for linear local operators : Uniqueness
We study an inverse problem for the fractional Schr\"odinger equation (FSE) with a local perturbation by a linear partial differential operator (PDO) of order smaller than the order of the fractional Laplacian. We show that one can uniquely recover the coefficients of the PDO from the Dirichlet-to-Neumann (DN) map associated to the perturbed FSE. This is proved for two classes of coefficients: coefficients which belong to certain spaces of Sobolev multipliers and coefficients which belong to fractional Sobolev spaces with bounded derivatives. Our study generalizes recent results for the zeroth and first order perturbations to higher order perturbations.
Tensor tomography: Progress and challenges
We survey recent progress in the problem of recovering a tensor field from its integrals along geodesics. We also propose several open problems.
On the linearized local Calderón problem
Preface
The X-Ray Transform for Connections in Negative Curvature
We consider integral geometry inverse problems for unitary connections and skew-Hermitian Higgs fields on manifolds with negative sectional curvature. The results apply to manifolds in any dimension, with or without boundary, and also in the presence of trapped geodesics. In the boundary case, we show injectivity of the attenuated ray transform on tensor fields with values in a Hermitian bundle (i.e. vector valued case). We also show that a connection and Higgs field on a Hermitian bundle are determined up to gauge by the knowledge of the parallel transport between boundary points along all possible geodesics. The main tools are an energy identity, the Pestov identity with a unitary connect…