0000000001111069
AUTHOR
Paul Campbell
Model independent determination of the spin of theTa180naturally occurring isomer
The hyperfine structures of the 33715.27 ${\mathrm{cm}}^{\ensuremath{-}1}$ and 33706.47 ${\mathrm{cm}}^{\ensuremath{-}1}$ transitions from the ground state of singly ionized Ta have been measured by collinear laser spectroscopy. The structures were found to contain a large second order contribution. From fitting the observed hyperfine components for both $^{181}\mathrm{Ta}$ and the $^{180}\mathrm{Ta}$ naturally occurring isomer it was possible to determine the first and second order hyperfine structure coefficients. As no model independent determination of the nuclear spin of the $^{180}\mathrm{Ta}$ isomer has been performed, fitting was attempted for a range of spins. A clear chi-squared m…
First on-line laser spectroscopy of radioisotopes of a refractory element
The first fully on-line isotope shift measurement of a radioactive refractory element is reported. Collinear laser-induced fluorescence measurements were made on the radioactive isotopes ${}^{170,172,173,174}\mathrm{Hf}$ produced with a flux of $2--3\ifmmode\times\else\texttimes\fi{}{10}^{3}$ ions per second from an ion-guide fed isotope separator. The method may be applied to all elements and isomers with lifetimes as short as 1 ms. The systematics of the new charge radii measurements are well reproduced by theory, with the maximum deformation in the chain occurring significantly below the midshell.
Evidence for Increased neutron and proton excitations between 51−63 Mn
The hyperfine structures of the odd-even 51−63Mnatoms (N=26 −38) were measured using bunched beam collinear laser spectroscopy at ISOLDE, CERN. The extracted spins and magnetic dipole moments have been compared to large-scale shell-model calculations using different model spaces and effective interactions. In the case of 61,63Mn, the results show the increasing importance of neutron excitations across the N=40subshell closure, and of proton excitations across the Z=28shell gap. These measurements provide the first direct proof that proton and neutron excitations across shell gaps are playing an important role in the ground state wave functions of the neutron-rich Mn isotopes. publisher: Els…
Collinear laser spectroscopy of stable palladium isotopes at the IGISOL facility
AbstractCollinear laser spectroscopy on stable palladium isotopes was performed at the IGISOL facility in Jyväskylä in preparation for an experiment on its neutron-rich isotopes. Five transitions from different initial atomic states were tested, with the goal of finding the most spectroscopically efficient. The observed intensities afforded a comparison with atomic-level population predictions based on charge-exchange calculations. For some transitions hyperfine parameters of 105Pd were measured, which were found to be in good agreement with literature values. A King plot analysis was performed using the measured isotope shifts and known charge radii from literature to determine the atomic …
Upgrades to the collinear laser spectroscopy experiment at the IGISOL
Abstract We give an overview of recent changes to the collinear laser spectroscopy beamline in the IGISOL laboratory. We present a new data acquisition system, commissioning of a newly installed charge exchange cell, and cooler-voltage calibration measurements. Currently ongoing modifications to the RFQ cooler-buncher are also discussed.
Development of a laser ion source at IGISOL
FURIOS, the Fast Universal laser IOn Source, is under development at the IGISOL (Ion Guide Isotope Separator On-Line) mass separator facility in Jyvaskyla, Finland. This new laser ion source will combine a state-of-the-art solid state laser system together with a dye laser system, for the selective and efficient production of exotic radioactive species without compromising the universality and fast release inherent in the IGISOL system. The motivation for, and development of, this ion source is discussed in relation to the programme of research ongoing at this mass separator facility.
Isotope shifts in natural cerium
High resolution crossed beam resonance fluorescence laser spectroscopy has been performed on an atomic beam of naturally occurring cerium, and isotope shifts have been measured in several transitions. Changes in mean square charge radius, δ〈r 2〉, have been extracted using the King plot technique and show the characteristic increase at the N = 82 neutron shell closure. The measurements form the basis for further investigations of radioactive isotopes and isomers on both sides of the shell closure.
Beam cooler for low-energy radioactive ions
Abstract An ion beam cooler for mass-separated radioactive ion beams has been developed and tested at the IGISOL-type mass separator facility. Technical description and characteristic properties are presented. An energy spread below 1 eV and transmission efficiency of 60% were measured.
Laser spectroscopy with an electrostatic ConeTrap
A compact electrostatic trap has been designed and installed as part of the recent upgrades to the IGISOL IV facility. The ConeTrap provides an in vacuo optical pumping site for low energy (800 eV) ionic ensembles available for interaction periods of 10-100 ms. At present, 6.7(3) % of injected mass A=98 ions can be trapped, stored for 5 ms, extracted and transported to a laser-ion interaction region. This fraction represents those ions for which no perturbation to total energy or energy spread is observed. Proposed enhancements to the trap are designed to improve the trapping efficiency by up to a factor of 5. Differential pumping and reduction in background pressure below the present 10−6 …
Proton-neutron pairing correlations in the self-conjugate nucleus 42Sc
Collinear laser spectroscopy of the N=Z=21 self-conjugate nucleus 42Sc has been performed at the JYFL IGISOL IV facility in order to determine the change in nuclear mean-square charge radius between the Iπ=0+ ground state and the Iπ=7+ isomer via the measurement of the 42g,42mSc isomer shift. New multi-configurational Dirac-Fock calculations for the atomic mass shift and field shift factors have enabled a recalibration of the charge radii of the 42−46Sc isotopes which were measured previously. While consistent with the treatment of proton-neutron, proton-proton and neutron-neutron pairing on an equal footing, the reduction in size for the isomer is observed to be of a significantly larger m…
Collinear laser spectroscopy of neutron-rich cerium isotopes near theN= 88 shape transition
Laser spectroscopy has been used to measure the isotope shifts of 146Ce and 148Ce relative to 144Ce, Z = 58. The new data, in combination with existing optical data on the stable isotopes and radioactive 144Ce isotope, permits a study of charge radii variations for the even-N Ce nuclei from N = 78 to N = 90. This range covers both the N = 82 shell closure and the N = 88 shape transition region. A marked increase in deformation occurs at N = 88 for elements with Z ≥ 60 but not for those with Z ≤ 56. The new data for Ce (Z = 58) show an intermediate behaviour, resulting in a smooth increase in deformation with Z in the N = 88, 90 region.
Upgrade and yields of the IGISOL facility
The front end of the Jyvaskyla IGISOL facility was upgraded in 2003 by increasing its pumping capacity and by improving the radiation shielding. In late 2005, the skimmer electrode of the mass separator was replaced by a sextupole ion guide, which improved the mass separator efficiency up to an order of magnitude. The current design of the facility is described. The updated yield data, achieved with and without the additional JYFLTRAP purification, using both fusion evaporation reactions and particle induced fission is presented to give an overview of the capability of the facility. These data have been determined either by radioactivity measurements or by direct ion counting after the Penn…
Laser spectroscopy of neutron deficient zirconium isotopes
The first optical measurements of the neutron deficient isotopes, 87-89Zr, and also the two long-lived isomers, 87m,89mZr, have been performed using the new technique of collinear laser spectroscopy of cooled, bunched ion beams. Nuclear mean-square charge radii, spins, magnetic moments and quadrupole moments spanning the N = 50 shell closure are reported. The \"kink\" in the charge radii trends at the neutron shell closure is the most pronounced obsd. for any element in the region. [on SciFinder (R)]
Nuclear moments, charge radii and spins of the ground and isomeric states in175Yb and177Yb
This paper reports static moments and changes in mean-square charge radii of 175, 177, 177mYb measured using collinear laser spectroscopy at the IGISOL facility. The moments are compared to predictions made using the Nilsson model to determine the purity of the multi-quasiparticle T1/2 = 11.4 s, Iπ = 8− state of 176Yb and the ground state of 177Yb. The ground-state spins of 175, 177Yb and the T1/2 = 6.41 s, E = 331.5 keV isomeric state in 177Yb, have been measured from the hyperfine structure to be 7/2, 9/2 and 1/2 respectively.
ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19
The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing como…
The shape transition in the neutron-rich yttrium isotopes and isomers
Abstract Laser spectroscopy has been used to study 86–90,92–102Y and isomeric states of 87–90,93,96,97,98Y. Nuclear charge radii differences, magnetic dipole and electric quadrupole moments have been obtained. Information on the nature of the Z ≈ 40 , N ≈ 60 sudden onset of deformation has been derived from all three parameters. It is seen that with increasing neutron number from the N = 50 shell closure that the nuclear deformation becomes increasingly oblate and increasingly soft. At N = 60 a transition to a strongly deformed rigid prolate shape occurs but prior to this, although the nuclear deformation is increasing with N, a proportionate increase in softness is also observed.
Ground state properties of manganese isotopes across the N=28 shell closure
Abstract The first optical study of the N = 28 shell closure in manganese is reported. Mean-square charge radii and quadrupole moments, obtained for ground and isomeric states in 50–56 Mn, are extracted using new calculations of atomic factors. The charge radii show a well defined shell closure at the magic number. The behaviour of the charge radii is strikingly different to that of the neutron separation energies where no shell effect can be observed. The nuclear parameters can be successfully described by large scale shell model calculations using the GXPF1A interaction.
Spins and magnetic moments ofMn58,60,62,64ground states and isomers
The odd-odd $^{54,56,58,60,62,64}\mathrm{Mn}$ isotopes ($Z=25$) were studied using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. From the measured hyperfine spectra the spins and magnetic moments of Mn isotopes up to $N=39$ were extracted. The previous tentative ground state spin assignments of $^{58,60,62,64}\mathrm{Mn}$ are now firmly determined to be $I=1$ along with an $I=4$ assignment for the isomeric states in $^{58,60,62}\mathrm{Mn}$. The $I=1$ magnetic moments show a decreasing trend with increasing neutron number while the $I=4$ moments remain quite constant between $N=33$ and $N=37$. The results are compared to large-scale shell-model calculations using the GXPF1A and…
First collinear laser spectroscopy measurements of radioisotopes from an IGISOL ion source
Abstract The standard Doppler-free technique of collinear laser spectroscopy has been successfully applied to radioisotopes from the ion-guide isotope separator (IGISOL) at the University of Jyvaskyla. The laser resonance fluorescence signals for the 140,142,144 Ba radioisotopes show that the ion beam energy spread is less than 6 eV, allowing the laser technique to have both high resolution and a sensitivity comparable with the best obtained at conventional facilities.
Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study
Invasive mechanical ventilation; COVID-19; Critical care Ventilación mecánica invasiva; COVID-19; Cuidado crítico Ventilació mecànica invasiva; COVID-19; Atenció crítica Background Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). Methods This is a multin…
Nuclear spin determination of100mY by collinear laser spectroscopy of optically pumped ions
The nuclear spin of the τ1/2 = 0.94 s isomer in 100Y has been determined by collinear laser spectroscopy of optically pumped yttrium fission fragments at the IGISOL facility, JYFL. The isotopes 96, 98, 99, 100Y were produced by the proton-induced fission of natural uranium, and studied on the 4d5s 3D2 (1045 cm−1) → 4d5p 3P1 (32 124 cm−1) transition at 321.67 nm. Enhancement of the population of the metastable 3D2 level was achieved by optically pumping the ground state population via the 5s2 1S0 → 4d5p 1P1 transition at 363.31 nm while the ions were stored in a linear Paul trap. These data, when combined with previous spectroscopic results, give sufficient information for the nuclear spin o…
Laser spectroscopy of niobium fission fragments: first use of optical pumping in an ion beam cooler buncher.
A new method of optical pumping in an ion beam cooler buncher has been developed to selectively enhance ionic metastable state populations. The technique permits the study of elements previously inaccessible to laser spectroscopy and has been applied here to the study of Nb. Model independent mean-square charge radii and nuclear moments have been studied for $^{90,90\text{ }\mathrm{m},91,91\text{ }\mathrm{m},92,93,99,101,103}\mathrm{Nb}$ to cover the region of the $N=50$ shell closure and $N\ensuremath{\approx}60$ sudden onset of deformation. The increase in mean-square charge radius is observed to be less than that for Y, with a substantial degree of $\ensuremath{\beta}$ softness observed …
Isotope shifts from collinear laser spectroscopy of doubly charged yttrium isotopes
Collinear laser spectroscopy has been performed on doubly charged ions of radioactive yttrium in order to study the isotope shifts of the 294.6-nm $5s\phantom{\rule{0.16em}{0ex}}^{2}S_{1/2}\ensuremath{\rightarrow}5p\phantom{\rule{0.16em}{0ex}}^{2}P_{1/2}$ line. The potential of such an alkali-metal-like transition to improve the reliability of atomic-field-shift and mass-shift factor calculations, and hence the extraction of nuclear mean-square radii, is discussed. Production of yttrium ion beams for such studies is available at the IGISOL IV Accelerator Laboratory, Jyv\"askyl\"a, Finland. This newly recommissioned facility is described here in relation to the on-line study of accelerator-p…
On-Line Ion Cooling and Bunching for Collinear Laser Spectroscopy
A new method has been developed for increasing the sensitivity of collinear laser spectroscopy. The method utilizes an ion-trapping technique in which a continuous low-energy ion beam is cooled and accumulated in a linear Paul trap and subsequently released as a short ( $10--20\ensuremath{\mu}\mathrm{s}$) bunch. In collinear laser measurements the signal-to-noise ratio has been improved by a factor of $2\ifmmode\times\else\texttimes\fi{}{10}^{4}$, allowing spectroscopic measurements to be made with ion-beam fluxes of $\ensuremath{\sim}50\mathrm{ions}{\mathrm{s}}^{\ensuremath{-}1}$. The bunching method has been demonstrated in an on-line isotope shift and hyperfine structure measurement on r…
Laser spectroscopy of cooled zirconium fission fragments
The first on-line laser spectroscopy of cooled fission fragments is reported. The $^{\mathrm{96}\mathrm{--}\mathrm{102}}\mathrm{Z}\mathrm{r}$ ions, produced in uranium fission, were extracted and separated using an ion guide isotope separator. The ions were cooled and bunched for collinear laser spectroscopy by a gas-filled linear Paul trap. New results for nuclear mean-square charge radii, dipole, and quadrupole moments are reported across the $N=60$ shape change. The mean-square charge radii are found to be almost identical to those of the Sr isotones and previously offered modeling of the radial changes is critically reviewed.
Quadrupole moments of odd-A 53−63Mn: Onset of collectivity towards N=40
Physics letters / B 760, 387 - 392 (2016). doi:10.1016/j.physletb.2016.07.016
Laser spectroscopy of radioactive Ti, Zr and Hf isotopes and isomers at the JYFL laser-IGISOL facility
Abstract The recent progress at the laser-ion guide isotope separator on-line facility, JYFL, is presented. At the facility new techniques for studying short-lived radioisotopes by laser spectroscopy have been developed and applied to the study of isotopes in refractory metal elements. In particular, recent results on the spectroscopy of cooled ion beams of radioactive Ti, Zr and Hf isotopes are discussed.
On the decrease in charge radii of multi-quasi particle isomers
Abstract We report changes in mean-square charge radii, δ 〈 r 2 〉 , magnetic moments and quadrupole moments for three multi-quasi particle isomers; 97m2Y, 176mYb and 178m1Hf. All the isomers are observed to display a decrease in 〈 r 2 〉 compared to the lower-lying nuclear state on which the isomer is built. The decreases in 〈 r 2 〉 occur despite the isomers showing increases in quadrupole moment. Possible mechanisms for the effect, which is now seen for six multi-quasi particle isomers, are discussed.
High-resolution laser spectroscopy of long-lived plutonium isotopes
Long-lived isotopes of plutonium were studied using two complementary techniques, high-resolution resonance ionisation spectroscopy (HR-RIS) and collinear laser spectroscopy (CLS). Isotope shifts have been measured on the $5f^67s^2\ ^7F_0 \rightarrow 5f^56d^27s\ (J=1)$ and $5f^67s^2\ ^7F_1 \rightarrow 5f^67s7p\ (J=2)$ atomic transitions using the HR-RIS method and the hyperfine factors have been extracted for the odd mass nuclei $^{239,241}$Pu. Collinear laser spectroscopy was performed on the $5f^67s\ ^8F_{1/2} \rightarrow J=1/2\; (27523.61\text{cm}^{-1})$ ionic transition with the hyperfine $A$ factors measured for $^{239}$Pu. Changes in mean-squared charge radii have been extracted and s…
Character of an 8− isomer of 130Ba
Abstract The static moments and isomer shift of the J π = K π =8 − isomeric state in 130 56 Ba have been measured using the technique of collinear laser spectroscopy. The isomer has been found to have a magnetic dipole moment of −0.043(28) μ N and a static quadrupole moment of +2.77(30) b. These values have been used to assign the state as a two neutron 7 2 + [404]⊗ 9 2 − [514] configuration corresponding to a prolate shape. The half-life of the isomer has been confirmed as 9.54(14) ms. The change in the mean square charge radius was found to be 〈 r 2 〉 130m −〈 r 2 〉 130g–s =−0.0473(30) fm 2 .
Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19
Abstract Background We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world's largest international, standardized data sets concerning hospitalized patients. Methods The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admiss…
Changes in nuclear structure along the Mn isotopic chain studied via charge radii
The hyperfine spectra of $^{51,53-64}$Mn were measured in two experimental runs using collinear laser spectroscopy at ISOLDE, CERN. Laser spectroscopy was performed on the atomic $3d^5\ 4s^2\ ^{6}\text{S}_{5/2}\rightarrow 3d^5\ 4s4p\ ^{6}\text{P}_{3/2}$ and ionic $3d^5\ 4s\ ^{5}\text{S}_2 \rightarrow 3d^5\ 4p\ ^{5}\text{P}_3$ transitions, yielding two sets of isotope shifts. The mass and field shift factors for both transitions have been calculated in the multiconfiguration Dirac-Fock framework and were combined with a King plot analysis in order to obtain a consistent set of mean-square charge radii which, together with earlier work on neutron-deficient Mn, allow the study of nuclear struc…
Collinear laser spectroscopy of radioisotopes of zirconium
Isotope shifts and hyperfine structures have been measured for radioisotopes of ionic zirconium using on-line laser spectroscopy at the IGISOL facility in Jyvaskyla, where the installation of an ion beam cooler/buncher has significantly improved the experimental sensitivity. Measurements have been made on all the neutron-deficient isotopes from 87Zr to 90Zr, including the isomers 87m,89mZr, and the neutron-rich isotopes from 96Zr to 102Zr. The change in mean square charge radii between the isotopes and the nuclear moments of the odd isotopes have been extracted. The data show a sudden increase in the mean square charge radius at mass A = 100, consistent with an onset of nuclear deformation …
Nuclear charge radii of neutron deficient titanium isotopes44Ti and45Ti
Optical isotope shifts of the unstable 44,45Ti isotopes, as well as those of stable 46−50Ti, have been investigated by collinear laser spectroscopy on fast ion beams using an ion guide isotope separator with a cooler-buncher. Changes in mean square charge radii across the neutron 1f7/2 shell are deduced. The evolution of the even-N Ti nuclear radii shows a generally increasing tendency with decreasing neutron number. This behaviour is significantly different to that of the neighbouring Ca isotopes which exhibit a symmetric parabolic behaviour across the shell. The trend of the Ti nuclear radii is consistent with the predictions of the relativistic mean-field theory. The charge radius of 44T…
Evidence of a sudden increase in the nuclear size of proton-rich silver-96
Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with th…
Nuclear moments and charge radii of the171Hf ground state and isomer
The magnetic moment, quadrupole moment and mean-square charge radial changes, relative to 172Hf, have been measured for the 171Hf ground state and the ½-[521] isomeric state, using on-line laser spectroscopy. The magnetic moments of the isomer and ground states are found to be + 0.526(16)µn and -0.674(12)µn, respectively. The spectroscopic quadrupole moment of the ground state is found to be +3.463(27) b. No change in mean-square charge radius is observed between the ground state and isomeric state. The observation of an inversion in the odd-even staggering at 171Hf is consistent with the suggested deformation trends.
COLLINEAR LASER SPECTROSCOPY ON NEUTRON-RICH Mn ISOTOPES APPROACHING N = 40
We have studied 51,53−64Mn (Z=25) via bunched-beam collinear laser spectroscopy at ISOLDE, CERN. Model-independent information on the ground- and isomeric state spins, as well as their g-factors is obtained from the measured hyperfine spectra. The spins are essential for further establishing the level schemes in the mass region, while the g-factors reveal the changing ground state wave functions in the Mn chain approaching N=40. ispartof: pages:699-702 ispartof: Acta Physica Polonica B vol:46 issue:3 pages:699-702 ispartof: location:Zakopane, Poland status: published
Nuclear charge radii and electromagnetic moments of radioactive scandium isotopes and isomers
International audience; Collinear laser spectroscopy experiments with the Sc + transition 3d4s 3 D 2 → 3d4p 3 F 3 at λ = 363.1 nm were performed on the 42−46 Sc isotopic chain using an ion guide isotope separator with a cooler-buncher. Nuclear magnetic dipole and electric quadrupole moments as well as isotope shifts were determined from the hyperfine structure for five ground states and two isomers. Extensive multi-configurational Dirac-Fock calculations were performed in order to evaluate the specific mass-shift, M SMS, and field-shift, F, parameters which allowed evaluation of the charge radii trend of the Sc isotopic sequence. The charge radii obtained show systematics more like the Ti r…
Cooling and bunching of ion beams for collinear laser spectroscopy
A greatly increased sensitivity in collinear laser spectroscopy experiments has been achieved by the application of new on-line ion cooling and bunching techniques. Cooling of a low-energy ion beam to low emittance and low velocity spread is shown to increase the peak efficiency while bunching the beam results in highly efficient background suppression.
First measurement of radioisotopes by collinear laser spectroscopy at an ion-guide separator
The first successful application of an ion-guide separator (IGISOL) for collinear laser spectroscopy of radioisotopes has achieved an efficiency comparable with the best obtained with catcher-ionizer facilities. The ion beam energy spread was determined to be less than 6 eV, allowing laser fluorescence resonance signals for the Ba-140,Ba-142,Ba-144 radioisotopes to be detected with high resolution and sensitivity. Applications of this technique to measuring nuclear properties of refractory elements and short lived isomers promises to be particularly advantageous.
Association of country income level with the characteristics and outcomes of critically ill patients hospitalized with acute kidney injury and COVID-19
Introduction Acute kidney injury (AKI) has been identified as one of the most common and significant problems in hospitalized patients with COVID-19. However, studies examining the relationship between COVID-19 and AKI in low- and low-middle income countries (LLMIC) are lacking. Given that AKI is known to carry a higher mortality rate in these countries, it is important to understand differences in this population. Methods This prospective, observational study examines the AKI incidence and characteristics of 32,210 patients with COVID-19 from 49 countries across all income levels who were admitted to an intensive care unit during their hospital stay. Results Among patients with COVID-19 ad…
The value of open-source clinical science in pandemic response
International audience
A thirty second isomer in Hf
An isomer has been detected in Hf-171 with a half-life of T-1/2 = 29.5(9) s. The state was populated in the Yb-170(alpha,3n)Hf-171m reaction at a beam energy of E-alpha = 50 MeV in an on-line ion guide isotope separator. The isomeric Hf-17lm(+) beam was extracted from the ion guide, mass-analysed and implanted in the surface of a microchannel-plate. The half-life of the collected activity was measured from the decay of the microchannel-plate count rate. We associate the isomer with the first excited slate in Hf-171 with spin 1/2(-) at an excitation energy of 22(2) keV.
Laser spectroscopy for nuclear structure physics
High-resolution laser spectroscopy is an established powerful tool in the study of nuclear shape, size and multipole moments. Measurements of the hyperfine structures and isotope shifts in the atomic spectra of radioactive nuclei provide unique insight into the evolution of the nuclear macroscopic shape and microscopic structure. These measurements can be made with high precision and high sensitivity and applied directly on-line at radioactive nuclear beam facilities. Recent measurements, advances at facilities and the future direction of the field are reviewed. A summary of experimental data is presented. peerReviewed
Quadrupole moments and mean-square charge radii in the bismuth isotope chain
Abstract Isotope shifts and hyperfine structures of the 205,206,208,210,210m,212,213 Bi isotopes have been studied on the 306.7 nm line using gas cell laser spectroscopy. The neutron-rich isotopes are the first isotones of Pb to be measured immediately above the N = 126 shell closure. The ground state quadrupole moments of the even- N isotopes increase as neutrons are added or removed from the N = 126 shell, but no corresponding increase is observed in the charge radii.
Collinear laser spectroscopy of ZrII
A new technique involving collinear laser spectroscopy of ion bunches has been used to study the radio-isotopes 87,87m,88,89,89m Zr.
Nuclear moments and charge radii of bismuth isotopes
Isotope shifts and hyperfine structures have been measured on the 306.7 nm line in bismuth isotopes with A = 205-210, 210m, 212 and 213 by gas cell laser spectroscopy. More precise measurements were made for the A = 207-209 isotopes in atomic beam measurements. Nuclear magnetic and quadrupole moments were deduced. A detailed comparison of the nuclear charge radii systematics has been made in the region using a King plot technique.