0000000001188921

AUTHOR

R. Guenette

Measurement of radon-induced backgrounds in the NEXT double beta decay experiment

The measurement of the internal $^{222}$Rn activity in the NEXT-White detector during the so-called Run-II period with $^{136}$Xe-depleted xenon is discussed in detail, together with its implications for double beta decay searches in NEXT. The activity is measured through the alpha production rate induced in the fiducial volume by $^{222}$Rn and its alpha-emitting progeny. The specific activity is measured to be $(38.1\pm 2.2~\mathrm{(stat.)}\pm 5.9~\mathrm{(syst.)})$~mBq/m$^3$. Radon-induced electrons have also been characterized from the decay of the $^{214}$Bi daughter ions plating out on the cathode of the time projection chamber. From our studies, we conclude that radon-induced backgro…

research product

Volume IV The DUNE far detector single-phase technology

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

research product

The Next White (NEW) detector

[EN] Conceived to host 5 kg of xenón at a pressure of 15 bar in the ¿ducial volume,the NEXTWhite (NEW)apparatus is currently the largest high pressure xenon gas TPC using electroluminescent ampli¿cation in the world. It is also a 1:2 scale model of the NEXT-100 detector scheduled to start searching for ßß0¿ decays in 136Xe in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas puri…

research product

Mitigation of backgrounds from cosmogenic 137 Xe in xenon gas experiments using 3 He neutron capture

[EN] Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we f…

research product

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

research product

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

research product

Ba$^{2+}$ ion trapping by organic submonolayer: towards an ultra-low background neutrinoless double beta decay detector

If neutrinos are their own antiparticles, the otherwise-forbidden nuclear reaction known as neutrinoless double beta decay ($\beta\beta 0\nu$) can occur, with a characteristic lifetime which is expected to be very long, making the suppression of backgrounds a daunting task. It has been shown that detecting (``tagging'') the Ba$^{+2}$ dication produced in the double beta decay ${}^{136}\mathrm{Xe} \rightarrow {}^{136}$Ba$^{+2}+ 2 e + (2 \nu)$ in a high pressure gas experiment, could lead to a virtually background free experiment. To identify these \Bapp, chemical sensors are being explored as a key tool by the NEXT collaboration . Although used in many fields, the application of such chemose…

research product

Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution

The NEXT collaboration: et al.

research product

High Voltage Insulation and Gas Absorption of Polymers in High Pressure Argon and Xenon Gases

High pressure gas time projection chambers (HPGTPCs) are made with a variety of materials, many of which have not been well characterized in high pressure noble gas environments. As HPGTPCs are scaled up in size toward ton-scale detectors, assemblies become larger and more complex, creating a need for detailed understanding of how structural supports and high voltage insulators behave. This includes the identification of materials with predictable mechanical properties and without surface charge accumulation that may lead to field deformation or sparking. This paper explores the mechanical and electrical effects of high pressure gas environments on insulating polymers PTFE, HDPE, PEEK, POM …

research product

Electroluminescence TPCs at the thermal diffusion limit

Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM

research product

Demonstration of the event identification capabilities of the NEXT-White detector

[EN] In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a 228Th calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 ± 1.5 stat ± 0.3 sys% for a background acceptance of 20.6 ± …

research product

Radiogenic backgrounds in the NEXT double beta decay experiment

[EN] Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterraneo de Canfranc with xenon depleted in Xe-136 are analyzed to derive a total background rate of (0.84 +/- 0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEX…

research product

Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches

The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of neutrinoless double-beta decay decay better than 1E27 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the in…

research product

Energy calibration of the NEXT-White detector with 1% resolution near Q ββ of 136Xe

Excellent energy resolution is one of the primary advantages of electroluminescent high pressure xenon TPCs, and searches for rare physics events such as neutrinoless double-beta decay ($\beta\beta0\nu$) require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for $\beta\beta0\nu$ searches.

research product

Initial results on energy resolution of the NEXT-White detector

One of the major goals of the NEXT-White (NEW) detector is to demonstrate the energy resolution that an electroluminescent high pressure xenon TPC can achieve for high energy tracks. For this purpose, energy calibrations with 137Cs and 232Th sources have been carried out as a part of the long run taken with the detector during most of 2017. This paper describes the initial results obtained with those calibrations, showing excellent linearity and an energy resolution that extrapolates to approximately 1% FWHM at Q$_{\beta\beta}$.

research product

Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures

We report new measurements of the drift velocity and longitudinal diffusion coefficients of electrons in pure xenon gas and in xenon-helium gas mixtures at 1-9 bar and electric field strengths of 50-300 V/cm. In pure xenon we find excellent agreement with world data at all $E/P$, for both drift velocity and diffusion coefficients. However, a larger value of the longitudinal diffusion coefficient than theoretical predictions is found at low $E/P$ in pure xenon, below the range of reduced fields usually probed by TPC experiments. A similar effect is observed in xenon-helium gas mixtures at somewhat larger $E/P$. Drift velocities in xenon-helium mixtures are found to be theoretically well pred…

research product

Dependence of polytetrafluoroethylene reflectance on thickness at visible and ultraviolet wavelengths in air

[EN] Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. However, the reflectance of PTFE is a function of its thickness. In this work, we investigate this dependence in air for light of wavelengths 260 nm and 450 nm using two complementary methods. We find that PTFE reflectance for thicknesses from 5 mm to 10 mm ranges from 92.5% to 94.5% at 450 nm, and from 90.0% to 92.0% at 260 nm We also see that the reflectance of PIFE of a given thickness can vary by as much as 2.7% within the same piece of material. Finally, we show that placing a specular reflector behind the PTFE can recover the loss of reflectan…

research product

Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment

[EN] Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in Xe-136. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a Th-228 calibration source. We train a network on Monte Carlo-simulat…

research product

Electron drift properties in high pressure gaseous xenon

[EN] Gaseous time projection chambers (TPC) are a very attractive detector technology for particle tracking. Characterization of both drift velocity and di¿usion is of great importance to correctly assess their tracking capabilities. NEXT-White is a High Pressure Xenon gas TPC with electroluminescent ampli¿cation, a 1:2 scale model of the future NEXT-100detector, which will be dedicated to neutrinoless double beta decay searches. NEXT-White has been operating at Canfranc Underground Laboratory (LSC) since December2016. The drift parameters have been measured using 83mKr for a range of reduced drift ¿elds at two di¿erent pressure regimes, namely 7.2 bar and 9.1 bar. Theresults have been comp…

research product

Volume I. Introduction to DUNE

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

research product

Neutral Bremsstrahlung emission in xenon unveiled

We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White TPC and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that has been postulated to exist in xenon that has been largely overlooked. For photon emission below 1000 nm, the NBrS yield increases from about 10$^{-2}$ photon/e$^{-}$ cm$^{-1}$ bar$^{-1}$ at pressure-reduced electric field values of 50 V cm$^{-1}$ bar$^{-1}$ to above 3$\times$10$^{-1}$ photon/e$^{-}$ cm$^{-1}$ bar$^{-1}$ at 500 V cm$^{-1}$ bar$^{-1}$. Above 1.5 kV cm$^{-1}$ bar$^{-1}$, values that …

research product

The dynamics of ions on phased radio-frequency carpets in high pressure gases and application for barium tagging in xenon gas time projection chambers

NEXT Collaboration: et al.

research product

Energy calibration of the NEXT-White detector with 1% resolution near Qßß of 136Xe

Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay (ßß0¿), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for ßß0¿ searches. [Figure not available: see fulltext.

research product

Calibration of the NEXT-White detector using 83m Kr decays

The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. It has been operating at Laboratorio Subterr'aneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed using 83mKr decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event transverse position which is caused by variations in solid angle coverage both for direct and reflected light and edge effects. After producing calibration maps to correct for …

research product

Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches

The NEXT collaboration: et al.

research product

Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

[EN] A new method to tag the barium daughter in the double-beta decay of Xe-136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (similar to 2 nm), and detected with a statistical significance of 12.9 sigma over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

research product

Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield

[EN] High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have m…

research product

Calibration of the NEXT-White detector using $^{83m}\mathrm{Kr}$ decays

The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. NEXT-White has been operating at Laboratorio Subterr\'aneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed with $^{83m}\mathrm{Kr}$ decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event position which is mainly caused by variations in solid angle coverage. After producing calibration maps to correct for both effects we measure an excellen…

research product

Mitigation of backgrounds from cosmogenic 137Xe in xenon gas experiments using 3He neutron capture

136Xe is used as the target medium for many experiments searching for 0¿ßß. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of 137Xe created by the capture of neutrons on 136Xe. This isotope decays via beta decay with a half-life of 3.8 min and a Q ß of ~4.16 MeV. This work proposes and explores the concept of adding a small percentage of 3He to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from 137Xe …

research product

Volume III. DUNE far detector technical coordination

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

research product

Dependence of polytetrafluoroethylene reflectance on thickness at visible and ultraviolet wavelengths in air

Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. However, the reflectance of PTFE is a function of its thickness. In this work, we investigate this dependence in air for light of wavelengths 260 nm and 450 nm using two complementary methods. We find that PTFE reflectance for thicknesses from 5 mm to 10 mm ranges from 92.5% to 94.5% at 450 nm, and from 90.0% to 92.0% at 260 nm. We also see that the reflectance of PTFE of a given thickness can vary by as much as 2.7% within the same piece of material. Finally, we show that placing a specular reflector behind the PTFE can recover the loss of reflectance i…

research product

Sensitivity of the NEXT experiment to Xe-124 double electron capture

[EN] Double electron capture by proton-rich nuclei is a second-order nuclear process analogous to double beta decay. Despite their similarities, the decay signature is quite di erent, potentially providing a new channel to measure the hypothesized neutrinoless mode of these decays. The Standard-Model-allowed two-neutrino double electron capture has been predicted for a number of isotopes, but only observed in 78Kr, 130Ba and, recently, 124Xe. The sensitivity to this decay establishes a benchmark for the ultimate experimental goal, namely the potential to discover also the lepton-number-violating neutrinoless version of this process. Here we report on the current sensitivity of the NEXT-Whit…

research product