0000000001224268

AUTHOR

Nitipon Puttaraksa

showing 16 related works from this author

Development of procedures for programmable proximity aperture lithography

2013

Abstract Programmable proximity aperture lithography (PPAL) with MeV ions has been used in Jyvaskyla and Chiang Mai universities for a number of years. Here we describe a number of innovations and procedures that have been incorporated into the LabView-based software. The basic operation involves the coordination of the beam blanker and five motor-actuated translators with high accuracy, close to the minimum step size with proper anti-collision algorithms. By using special approaches, such writing calibration patterns, linearisation of position and careful backlash correction the absolute accuracy of the aperture size and position, can be improved beyond the standard afforded by the repeata…

Nuclear and High Energy Physicsta114business.industryApertureComputer sciencemicrofluidicsScalable Vector GraphicsFaraday cupcomputer.file_formatMeV ion beam lithographyprogrammable proximity aperture lithography (PPAL)symbols.namesakeSoftwareOpticsion-fluencePosition (vector)CalibrationElectronic engineeringsymbolsbusinessInstrumentationLithographycomputerBeam (structure)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Fast and blister-free irradiation conditions for cross-linking of PMMA induced by 2MeV protons

2013

For soft lithography, the conventional negative tone resists, such as SU-8, that are used to create the mold have a number of drawbacks. PMMA, which is normally used as a positive tone resist, can be used as a negative resist by using high-fluence irradiation conditions. In this report, we outline optimization of the irradiation conditions for PMMA thin films using 2MeV H^+ ions to exploit their ability to work as a negative tone resist at ion fluences above 1.0x10^1^5ionscm^-^2. The main aim was to induce cross-linking while maintaining the exposed regions free of blisters and maintaining short irradiation times. We found that by using a two-step process with a low-flux irradiation, follow…

Ability to workMaterials scienceta114BlistersPhotoresistCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSoft lithographySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonResistmedicineIrradiationElectrical and Electronic Engineeringmedicine.symptomComposite materialThin filmMicroelectronic Engineering
researchProduct

Advanced time-stamped total data acquisition control front-end for MeV ion beam microscopy and proton beam writing

2013

Many ion-matter interactions exhibit [email protected] time dependences such as, fluorophore emission quenching and ion beam induced charge (IBIC). Conventional event-mode MeV ion microbeam data acquisition systems discard the time information. Here we describe a fast time-stamping data acquisition front-end based on the concurrent processing capabilities of a Field Programmable Gate Array (FPGA). The system is intended for MeV ion microscopy and MeV ion beam lithography. The speed of the system (>240,000 events s^-^1 for four analogue to digital converters (ADC)) is limited by the ADC throughput and data handling speed of the host computer.

Materials scienceIon beamta221Analytical chemistryHardware_PERFORMANCEANDRELIABILITYIon beam lithographyProton beam writingFront and back endsComputer Science::Hardware ArchitectureData acquisitionOpticsMicroscopyHardware_INTEGRATEDCIRCUITSElectrical and Electronic EngineeringField-programmable gate arrayHardware_REGISTER-TRANSFER-LEVELIMPLEMENTATIONta114business.industryta1182MicrobeamCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPhysics::Accelerator PhysicsbusinessMicroelectronic Engineering
researchProduct

Why are hydrogen ions best for MeV ion beam lithography?

2013

The exposure characteristics of poly-(methyl methacrylate) (PMMA) for 2MeV ^1H^+, 3MeV ^4He^2^+ and 6MeV ^1^2C^3^+ have been investigated. The samples were characterised using Atomic Force Microscopy (AFM), optical microscopy and Raman spectroscopy. Development was carried out using a 7:3 propan-2-ol:H"2O mixture to determine clearing and cross-linking fluences. It was found that protons had a considerably wider tolerance to exposure variations and a smaller span of doses within the ion track. Furthermore, the void formation and consequent stress-induced surface roughening were smaller for protons. For all ions, the C?C bond Raman signal increased continuously with dose and fluence, even we…

Materials scienceHydrogenta114Ion trackAnalytical chemistrychemistry.chemical_elementCondensed Matter PhysicsIon beam lithographyFluenceAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonlaw.inventionsymbols.namesakechemistry.chemical_compoundchemistryOptical microscopelawsymbolsElectrical and Electronic EngineeringMethyl methacrylateRaman spectroscopyta216ta116Microelectronic Engineering
researchProduct

High speed microfluidic prototyping by programmable proximity aperture MeV ion beam lithography

2013

Abstract Microfluidics refers to the science and technology for controlling and manipulating fluids that flow along microchannels. For the development of complex prototypes, many microfluidic test structures are required first. Normally, these devices are fabricated via photolithography. This technique requires a photomask for transferring a pattern to photoresists by exposing with UV light. However, this method can be slow when a new structure is required to change. This is because a series of photomasks are needed, which is time consuming and costly. Here, we present a programmable proximity aperture lithography (PPAL) technique for the development of microfluidic prototype in poly(methyl…

ta113Nuclear and High Energy PhysicsMaterials scienceFabricationApertureMicrofluidicsProcess (computing)NanotechnologyIon beam lithographylaw.inventionlawta318PhotomaskPhotolithographyInstrumentationLithographyNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Direct Writing of Channels for Microfluidics in Silica by MeV Ion Beam Lithography

2011

The lithographic exposure characteristic of amorphous silica (SiO2) was investigated for 6.8 MeV16O3+ions. A programmable proximity aperture lithography (PPAL) technique was used for the ion beam exposure. After exposure, the exposed pattern was developed by selective etching in 4% v/v HF. Here, we report on the development of SiO2in term of the etch depth dependence on the ion fluence. This showed an exponential approach towards a constant asymptotic etch depth with increasing ion fluence. An example of microfluidic channels produced by this technique is demonstrated.

Materials scienceta114Ion beambusiness.industryApertureMicrofluidicsGeneral EngineeringAnalytical chemistryIon beam lithographyIonIon beam depositionEtching (microfabrication)OptoelectronicsbusinessLithographyAdvanced Materials Research
researchProduct

Fabrication of microfluidic devices using MeV ion beam Programmable Proximity Aperture Lithography (PPAL)

2008

Abstract MeV ion beam lithography is a direct writing technique capable of producing microfluidic patterns and lab-on-chip devices with straight walls in thick resist films. In this technique a small beam spot of MeV ions is scanned over the resist surface to generate a latent image of the pattern. The microstructures in resist polymer can be then revealed using a chemical developer that removes exposed resist, while leaving unexposed resist unaffected. In our system the size of the rectangular beam spot is programmably defined by two L-shaped tantalum blades with well-polished edges. This allows rapid exposure of entire rectangular pattern elements up to 500 × 500 μm in one step. By combin…

Nuclear and High Energy PhysicsMaterials scienceIon beamAperturebusiness.industryIon beam lithographyPelletronOpticsResistbusinessInstrumentationLithographyElectron-beam lithographyBeam (structure)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Resolution performance of programmable proximity aperture MeV ion beam lithography system

2007

AbstractAn ion beam lithography system for light and heavy ions has been developed at the University of Jyväskylä's Accelerator Laboratory. The system employs a programmable proximity aperture to define the beam. The proximity aperture is made up of four Ta blades with precise straight edges that cut the beam in the horizontal and vertical directions. The blade positions and dimensions are controlled by a pair of high-precision linear-motion positioners. The sample is mounted on a X-Y-Z stage capable of moving with 100 nm precision steps under computer control. The resolution performance of the system is primarily governed by the proximity aperture. Pattern edge sharpness is set by the beam…

Materials scienceIon beamAperturebusiness.industryAnalytical chemistryIon beam lithographyOpticsPhysics::Accelerator PhysicsRay tracing (graphics)X-ray lithographybusinessNext-generation lithographyBeam (structure)Beam divergence
researchProduct

Development of economic MeV-ion microbeam technology at Chiang Mai University

2017

Abstract Developing high technologies but in economic manners is necessary and also feasible for developing countries. At Chiang Mai University, Thailand, we have developed MeV-ion microbeam technology based on a 1.7-MV Tandetron tandem accelerator with our limited resources in a cost-effective manner. Instead of using expensive and technically complex electrostatic or magnetic quadrupole focusing lens systems, we have developed cheap MeV-ion microbeams using programmed L-shaped blade aperture and capillary techniques for MeV ion beam lithography or writing and mapping. The programmed L-shaped blade micro-aperture system consists of a pair of L-shaped movable aperture pieces which are contr…

Nuclear and High Energy PhysicsMaterials scienceIon beamAperturemicrobeam02 engineering and technologyIon beam lithography01 natural scienceslaw.inventionOpticslaw0103 physical sciencesQuadrupole magnetInstrumentationLithography010302 applied physicsbusiness.industryta1182MicrobeamMeV ionL-shaped blade aperture021001 nanoscience & nanotechnologytapered glass capillaryComputer Science::OtherLens (optics)Physics::Accelerator Physicslithography0210 nano-technologybusinessBeam (structure)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Programmable proximity aperture lithography with MeV ion beams

2008

A novel MeV ion beam programmable proximity aperture lithography system has been constructed at the Accelerator Laboratory of the University of Jyvaskyla, Finland. This facility can be used to fabricate three dimensional microstructures in thick (<100μm) polymer resist such as polymethylmethacrylate. In this method, MeV ion beams from the 1.7 MV pelletron and K130 cyclotron accelerators are collimated to a beam spot of rectangular shape. This shape is defined by a computer-controlled aperture made of a pair of L-shaped Ta blades which are in close proximity to the sample to minimize the penumbra broadening. Here the authors report on development of the system, the controlling software, the …

Materials scienceIon beambusiness.industryCondensed Matter PhysicsIon beam lithographyFocused ion beamPelletronOpticsPhysics::Accelerator PhysicsStencil lithographyX-ray lithographyElectrical and Electronic EngineeringbusinessNext-generation lithographyMaskless lithographyJournal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures
researchProduct

Preparation of graphene nanocomposites from aqueous silver nitrate using graphene oxide’s peroxidase-like and carbocatalytic properties

2020

AbstractThe present study evaluates the role of graphene oxide’s (GO’s) peroxidase-like and inherent/carbocatalytic properties in oxidising silver nitrate (AgNO3) to create graphene nanocomposites with silver nanoparticles (GO/Ag nanocomposite). Activation of peroxidase-like catalytic function of GO required hydrogen peroxide (H2O2) and ammonia (NH3) in pH 4.0 disodium hydrogen phosphate (Na2HPO4). Carbocatalytic abilities of GO were triggered in pH 4.0 deionised distilled water (ddH2O). Transmission electron microscope (TEM), scanning electron microscope (SEM), cyclic voltammetry (CV) and UV-Vis spectroscopy aided in qualitatively and quantitatively assessing GO/Ag nanocomposites. TEM and …

Materials scienceScanning electron microscopeOxidelcsh:Medicine02 engineering and technology010402 general chemistry01 natural sciencesArticleCatalysisSilver nanoparticlelaw.inventionCatalysischemistry.chemical_compoundnanorakenteetlawgrafeeniChemical synthesislcsh:ScienceMultidisciplinaryNanocompositeGraphenelcsh:Rgrafeenioksidi021001 nanoscience & nanotechnology0104 chemical sciencesSilver nitratechemistryChemical engineeringkatalyysilcsh:QGrapheneCyclic voltammetry0210 nano-technology
researchProduct

Fabrication of a negative PMMA master mold for soft-lithography by MeV ion beam lithography

2012

Abstract In this study, poly(methyl methacrylate) (PMMA) was investigated as a negative resist by irradiation with a high-fluence 2 MeV proton beam. The beam from a 1.7 MV Tandetron accelerator at the Plasma and Beam Physics Research Facility (PBP) of Chiang Mai University is shaped by a pair of computer-controlled L-shaped apertures which are used to expose rectangular pattern elements with 1–1000 μm side length. Repeated exposure of rectangular pattern elements allows a complex pattern to be built up. After subsequent development, the negative PMMA microstructure was used as a master mold for casting poly(dimethylsiloxane) (PDMS) following a standard soft-lithography process. The PDMS chi…

Nuclear and High Energy PhysicsFabricationMaterials scienceta114business.industryMicrofluidicsNanotechnologyPhotoresistIon beam lithographyCastingSoft lithographyOptoelectronicsIrradiationbusinessInstrumentationBeam (structure)Nuclear Instruments and Methods in Physics Research B
researchProduct

Lithography exposure characteristics of poly(methyl methacrylate) (PMMA) for carbon, helium and hydrogen ions

2012

Abstract Poly(methyl methacrylate) is a common polymer used as a lithographic resist for all forms of particle (photon, ion and electron) beam writing. Faithful lithographic reproduction requires that the exposure dose, Θ, lies in the window Θ 0 ⩽ Θ Θ × 0 , where Θ 0 and Θ × 0 represent the clearing and cross-linking onset doses, respectively. In this work we have used the programmable proximity aperture ion beam lithography systems in Chiang Mai and Jyvaskyla to determine the exposure characteristics in terms of fluence for 2 MeV protons, 3 MeV 4 He 2 + and 6 MeV 12 C 3 + ions, respectively. After exposure the samples were developed in 7:3 by volume propan-2-ol:de-ionised water mixture. At…

Nuclear and High Energy PhysicsMaterials scienceta114Ion trackAnalytical chemistryIon beam lithographyFluencePoly(methyl methacrylate)Proton beam writingIonResistvisual_artvisual_art.visual_art_mediumInstrumentationLithographyNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Development of economic MeV-ion microbeam technology at Chiang Mai University

2017

Developing high technologies but in economic manners is necessary and also feasible for developing countries. At Chiang Mai University, Thailand, we have developed MeV-ion microbeam technology based on a 1.7-MV Tandetron tandem accelerator with our limited resources in a cost-effective manner. Instead of using expensive and technically complex electrostatic or magnetic quadrupole focusing lens systems, we have developed cheap MeV-ion microbeams using programmed L-shaped blade aperture and capillary techniques for MeV ion beam lithography or writing and mapping. The programmed L-shaped blade micro-aperture system consists of a pair of L-shaped movable aperture pieces which are controlled by …

microbeamPhysics::Accelerator PhysicsMeV ionL-shaped blade aperturelitografia (grafiikka)tapered glass capillaryComputer Science::Other
researchProduct

Development of MeV ion beam lithography technique for microfluidic applications

2011

ionitionisuihkulitografia
researchProduct

Development of a microfluidic design for an automatic lab-on-chip operation

2016

Simple and easy to use are the keys for developing lab-on-chip technology. Here, a new microfluidic circuit has been designed for an automatic lab-on-chip operation (ALOCO) device. This chip used capillary forces for controlled and precise manipulation of liquids, which were loaded in sequence from different flowing directions towards the analysis area. Using the ALOCO design, a non-expert user is able to operate the chip by pipetting liquids into suitable inlet reservoirs. To test this design, microfluidic devices were fabricated using the programmable proximity aperture lithography technique. The operation of the ALOCO chip was characterized from the flow of red-, blue- and un-dyed deioni…

capillary flowHardware_INTEGRATEDCIRCUITSmikrofluidistiikkaMeV ion beam lithographylab-on-chip
researchProduct