0000000001225786
AUTHOR
Cristian Gambarotti
Heat-Resistant Fully Bio-Based Nanocomposite Blends Based on Poly(lactic acid)
Poly(lactic acid) (PLA) is melt mixed with polyamide 11 (PA11) to obtain a heat-resistant fully bio-based blend with PLA as the dominant component. The goal is achieved by adding small amounts of organoclay (OMMT), which is used to manipulate the blend microstructure. The selective positioning of the OMMT inside the PA11 and at the PLA/PA11 interface turns the blend morphology from drop/matrix into co-continuous at high PLA content (70 wt%). The OMMT-rich PA11 framework that interpenetrates the major PLA phase effectively contributes to bear stresses, and the nanocomposite blend keeps its structural integrity up to ≈160 °C, i.e., about 100 °C above the PLA glass transition.
Silanol-POSS as dispersing agents for carbon nanotubes in polyamide
Silanol polyhedrad oligomeric silsesquiosane terminated with phenyl rings (phPOSS) has been considered as dispersing agent for carbon nanotubes (CNTs) in polyamide (PA) matrix. Two different approaches have been followed for the introduction of the phPOSS molecules: a âclassicalâ approach which involves the introduction of the dispersing agent during the melt mixing, and an âinnovativeâ approach, consisting in the immobilization, either covalent and non-covalent, of phPOSS molecules onto CNTs surface. The properties of PA-based nanocomposites, containing free phPOSS molecules and phPOSS molecules immobilized onto the CNTs outer surface, have been evaluated through rheological, mecha…
Ionic liquid gels and antioxidant carbon nanotubes: Hybrid soft materials with improved radical scavenging activity
Hypothesis: Performances of materials are frequently affected by the action of radicals that can induce their degradation. To overcome the above issue, natural antioxidants (AOs) can be added during manufacturing. Considering the high instability of AOs, they have been adsorbed on carbon nanomaterials surface. However, the inclusion of functionalized carbon nanomaterials into gel matrix could enhance the antioxidant efficiency and represent an easy way to disperse and handle the active species.Experiments: Carboxypropyl functionalized carbon nanotubes (f-CNT), pure or with physically adsorbed alpha-tocopherol (f-CNT-VE) and quercetin (f-CNT-Q), were incorporated in some ionic liquid gels (I…
Sunlight-induced functionalisation reactions of heteroaromatic bases with aldehydes in the presence of TiO2: A hypothesis on the mechanism
In previous studies we reported a new photocatalytic system involving polycrystalline TiO2 for the selective functionalisation of heteroaromatic bases with ethers and amides. In order to extend the applications of this new reaction and to better understand the mechanism involved, we have examined aromatic and aliphatic aldehydes as acyl radical sources for the nucleophilic addition to protonated N-heteroarenes in acetonitrile as the solvent and TiO2/H2O2 as the photocatalytic system. Acyl radicals may undergo decarbonylation to yield the corresponding alkyl radicals. Acyl/alkyl derivative ratios depend on the nature of the aldehydes, and present a different distribution from that obtained i…
α-Tocopherol-induced radical scavenging activity in carbon nanotubes for thermo-oxidation resistant ultra-high molecular weight polyethylene-based nanocomposites
?-Tocopherol, a natural antioxidant molecule, was physically immobilized on the outer surface of multi-walled carbon nanotubes (CNTs), and the resulting functionalised particles (f-CNTs) were dispersed in ultra-high molecular weight polyethylene aiming at improving its thermo-oxidation resistance. The success of the functionalization was assessed through spectroscopic and thermal analysis, and the influence of the filler on the thermo-oxidative stability of the nanocomposites was investigated through rheological analyses and infrared spectroscopy. We found that the addition of only 1 wt.% of f-CNTs brings about a surprisingly high oxidation resistance, with a five/ten-fold increase of the i…
Sunlight-induced reactions of some heterocyclic bases with ethers in the presence of TiO2
The reactions between various heterocyclic bases and ethers induced by sunlight are reported. In several cases the photoreaction occurred with higher yields in liquid–solid heterogeneous system in the presence of polycrystalline TiO2 than in homogeneous system. The derivatives obtained with trioxane may give an easy entry to heterocyclic aldehydes.
Multi-functional polyhedral oligomeric silsesquioxane-functionalized carbon nanotubes for photo-oxidative stable Ultra-High Molecular Weight Polyethylene-based nanocomposites
Abstract Nanohybrid (phPOSS- f -CNTs) based on Carbon Nanotubes (CNTs) and Phenyl Polyhedral Olygomenric Silsesquioxane (phPOSS) have been synthesized to be used as multifunctional filler for polymer nanocomposites. The success of the functionalization procedure has been demonstrated via accurate spectroscopic, spectrometric and thermo-gravimetric analyses. The results reveal that a large portion of phPOSS is covalently linked to CNTs, while a small amount of phPOSS remains physically adsorbed due to the strong interactions coming from π electron coupling between the CNTs and phenyl rings in phPOSS. Small amounts (1 wt.%) of phPOSS- f -CNTs have been dispersed in Ultra High Molecular Weight…
Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites.
The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT's original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behavio…
Tunable radical scavenging activity of carbon nanotubes through sonication
Abstract Carbon nanotubes (CNTs) having controlled radical scavenging activity have been achieved tuning the content of their lattice defects induced by an ultra-sound (us) treatment. The reactivity of CNTs, subjected to ultra-sonication for different time intervals, toward 1,1-diphenyl-2-pycryl (DPPH) and hydroxyl (•OH) radicals has been estimated and related to defect concentration, evaluated through Raman spectrometry. The radical scavenging efficiency of ultra-sound treated CNTs (us-CNTs) increases with increasing the content of the structural defects, suggesting that the defect resulting from us treatment can be capitalized to obtain an amplified and controlled radical scavenging activ…
Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight Polyethylene-based nanocomposites
Hindered Amine Light Stabilizer (HAS) molecules have been covalently linked on the outer surface of multi-walled carbon nanotubes (CNTs), and the so-obtained multi-functional fillers (HAS-f-CNTs) have been compounded with Ultra High Molecular Weight Polyethylene (UHMWPE) to get composite films. The success of the grafting reaction of the HAS molecules has been confirmed through spectroscopic and thermo-gravimetric analyses. Morphological analyses reveal a segregated microstructure, in which CNT-rich channels surround the polymer domains. This morphology results in improved mechanical properties and appreciable electrical conductive features. More importantly, the addition of only 1 wt.% of …
Advanced nano-hybrids for thermo-oxidative-resistant nanocomposites
In the present work, trisilanol phenyl polyhedral olygomeric silsesquiosane (TSPh-POSS) has been physically immobilized onto carbon nanotubes (CNTs) bearing covalently linked Br-terminated long-alkyl chain (Br-alkyl-f-CNTs), and the so obtained hybrid nanoparticles (Br-alkyl-f-CNTs/TSPh-POSS) have been used to prepare ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites with enhanced thermo-oxidative resistance. The effective immobilization of the TSPh-POSS molecules has been confirmed by spectroscopic and thermo-gravimetric analyses. Besides, the influence of the hybrid nanoparticles on the rheological and mechanical behaviour and morphology of the nanocomposites have bee…
Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state - Part I: Thermal and thermo-oxidative degradation of polyamide 11
Abstract Thermal and thermo-oxidative degradation of polyamide 11 (PA11) in the melt state (T = 215 °C) are studied by resorting to time-resolved mechanical spectroscopy. Such an approach allows to elude the changes in the rheological properties occurring while testing, thus enabling the rigorous study of polymer degradation in the melt state. Different concurrent degradation reactions in oxidative (air) and non-oxidative (N2) environment are promptly guessed by studying the time evolutions of rheological functions. In particular, changes in the zero-frequency complex viscosity reflects changes in the average molecular weight, while the appearance of a yield stress in the complex viscosity …
Carbon nanotubes-based nanohybrids for multifunctional nanocomposites
In the present work, nano-hybrids based on carbon nanotubes (CNTs) bearing immobilized, either through covalent linkage and physical absorption, commercial anti-oxidant molecules have been formulated and used as nanofillers in Ultra High Molecular Weight Polyethylene (UHMWPE), aiming at preparing multifunctional nanocomposites. The effective immobilization of the anti-oxidant molecules has been probed by spectroscopic and thermogravimetric analyses. The study of the morphology and the rheological behaviour of the nanocomposites show that the immobilization of anti-oxidant molecules onto the CNTs surface is beneficial for the state of the polymer/nanoparticles interfacial region. Additionall…
Cover Picture: Macromol. Mater. Eng. 1/2014
Immobilization of natural anti-oxidants on carbon nanotubes and aging behavior of ultra-high molecular weight polyethylene-based nanocomposites
The use of natural antioxidants is an attractive way to formulate nanocomposites with extended durability and with potential applications in bio-medical field. In this work, Vitamin E (VE) in the form of α-tocopherol and Quercetin (Q) are physically immobilized on the outer surface of multi-walled carbon nanotubes (CNTs). Afterward, the CNTs-VE and CNTs-Q are used to formulate thermally stable ultra high molecular weight polyethylene based nanocomposites. The obtained results in the study of the thermo-oxidation behavior suggest a beneficial effect of the natural anti-oxidant carbon nanotubes systems. The unexpected excellent thermo-resistance of the nanocomposites seems to be due to a syne…
Nano-hybrids based on quercetin and carbon nanotubes with excellent anti-oxidant activity
Abstract Multi-functional nano-hybrids based on Quercetin (Q), a natural antioxidant, and functionalized Carbon Nanotubes (CNTs) have been formulated and used to prepare Ultra High Molecular Weight PolyEthylene (UHMWPE)-based nanocomposites. The study of the nanocomposites rheological behaviour shows that the immobilization of Q molecules onto CNTs outer surface leads to a beneficial effect on the state of the interface between polymer and nanoparticles. Additionally, the investigation of the thermo- and photo-oxidation processes reveals that the hybrids nanoparticles are able to exert a remarkable stabilizing action, due to strong physical interaction between Q and CNTs. In particular, the…
Improvement of oxidation resistance of polymer-based nanocomposites through sonication of carbonaceous nanoparticles
Abstract The work aim is focused on two different aspects: first, the investigation of the effect of extended ultra-sound-assisted treatment (us) of carbonaceous nanoparticles, such as carbon nanotubes (CNTs) and carbon black (CB), on their radical scavenging activity, and second, the investigation of the oxidative resistance of polymer-based nanocomposites, containing us-treated CNTs and CB. Particularly, the CNTs and CB have been subjected to us sonication for different time intervals and the performed analysis reveals that both kinds of nanoparticles show decreased average hydrodynamic diameters and large content of surface defects. Really, the increased content of CNTs and CB defects, a…
TiO2 in Organic Photosynthesis: Sunlight Induced Functionalization of Heterocyclic Bases in the Presence of TiO2
Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the characterization of functionalized carbon nanotubes
RATIONALE Functionalization of carbon nanotubes (CNTs) generates complex systems that require the development of suitable characterization protocols. New techniques have been explored, and existing analytical and spectroscopic methods to characterize functionalized CNTs have been adapted. Presently, chemical characterization of functionalized CNTs (f-CNTs) remains a difficult task. METHODS Matrix-assisted laser desorption/ionization (MALDI) analysis is performed on f-MWCNT samples prepared via grafting or absorption of anti-oxidant (AO) molecules on both MWCNT-COOH and MWCNT-OH. Covalently functionalized MWCNTs were subjected to thermal degradation and/or hydrolysis reaction before analysis…
Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state – Part II: Thermal and thermo-oxidative degradation of polyamide 11/organo-clay nanocomposites
Abstract Thermal and thermo-oxidative degradation of nanocomposites based on polyamide 11 (PA11) and organo-modified clay (Cloisite® 30B) are studied in the melt state (T = 215 °C) via time-resolved mechanical spectroscopy (TRMS). The goal is assessing the potentiality of rheological analysis for studying polymer degradation in complex systems such as polymer nanocomposites, whose rheological response stems from the combination of the contributions of polymer and nanoparticles. We prove that a thorough analysis grounded on TRMS allows to isolate the effect of degradation of the polymer matrix, whose progress can be hence profitably monitored. Essentially the same degradation mechanisms as i…
Grafting of polymer chains on the surface of carbon nanotubes via nitroxide radical coupling reaction
Poly(butylene succinate) (PBS) was grafted on the surface of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) modified multi-walled carbon nanotubes (MWCNTs) via a nitroxide radical coupling reaction. TEMPO functionalized MWCNTs (MWCNTs-g-TEMPO) were synthesized using the Cu(I)-catalyzed azide/alkyne click chemistry approach and the covalent bond of the nitroxide moieties onto the MWCNTs was confirmed via electron paramagnetic resonance (EPR) spectroscopy. The PBS grafting on the sidewalls of MWCNTs was carried out in solution via peroxide-induced formation of macroradicals and it was confirmed by EPR and attenuated total reflectance Fourier transform infrared analysis. Preliminary rheological …
Functionalization of aliphatic polyesters by nitroxide radical coupling
Functionalized poly(butylene succinate) (PBS) samples were prepared by a post-polymerization method based on the coupling reaction between TEMPO derivatives bearing different functionalities and PBS macroradicals generated by H-abstraction using a peroxide. 4-Benzoyloxy-2,2,6,6-tetramethylpiperidine-1- oxyl (BzO-TEMPO) and 4-(1-naphthoate)-2,2,6,6-tetramethylpiperidine-1-oxyl (NfO-TEMPO), a pro-fluorescent nitroxide, were successfully grafted on PBS, as revealed by MALDI TOF MS and UV-Vis spectroscopy. The functionalization degrees were accurately determined by UV-Vis analysis and confirmed by 1H-NMR spectroscopy. The grafting site was identified by combining theoretical calculations with e…
Advanced ultra-high molecular weight polyethylene/antioxidant-functionalized carbon nanotubes nanocomposites with improved thermo-oxidative resistance
Multiwalled carbon nanotubes (CNTs) functionalized with hindered phenol moieties are dispersed in ultra-high molecular weight polyethylene (UHMWPE), and the stabilizing action of the antioxidant (AO) functionalized CNTs (AO-f-CNTs) is studied through a combination of rheological and spectroscopic (FT-IR) analyses. The effectiveness of two alternative compounding methods, namely hot compaction (HC) and melt mixing (MM), is compared. The combination of high temperature and mechanical stress experienced during MM brings about noticeable degradation phenomena of the matrix already in the course of the compounding step. Differently, the milder conditions of the HC process preserve the stability …
Thermo-oxidative resistant nanocomposites containing novel hybrid-nanoparticles based on natural polyphenol and carbon nanotubes
Abstract Quercetin (Q), a natural antioxidant molecule, is physically immobilized onto multi-walled carbon nanotubes (CNTs) bearing covalently-linked long-chain alkyl functional groups, and the so obtained hybrid-nanoparticles are used to prepare Ultra High Molecular Weight PolyEthylene-based nanocomposite films with enhanced thermo-oxidation resistance. The effective immobilization of the Q molecules is confirmed by spectroscopic (micro-Raman, ATR-FTIR, and FTIR) and thermo-gravimetric analyses, and the influence of the nanoparticles on the rheological behaviour and thermo-oxidative stability of the nanocomposites are investigated. Rheological analyses (linear viscoelasticity and stress re…