0000000001280504
AUTHOR
Thomas G. Wong
Spatial Search by Continuous-Time Quantum Walk with Multiple Marked Vertices
In the typical spatial search problems solved by continuous-time quantum walk, changing the location of the marked vertices does not alter the search problem. In this paper, we consider search when this is no longer true. In particular, we analytically solve search on the "simplex of $K_M$ complete graphs" with all configurations of two marked vertices, two configurations of $M+1$ marked vertices, and two configurations of $2(M+1)$ marked vertices, showing that the location of the marked vertices can dramatically influence the required jumping rate of the quantum walk, such that using the wrong configuration's value can cause the search to fail. This sensitivity to the jumping rate is an is…
Irreconcilable Difference Between Quantum Walks and Adiabatic Quantum Computing
Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schr\"odinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpo…
Quantum Search with Multiple Walk Steps per Oracle Query
We identify a key difference between quantum search by discrete- and continuous-time quantum walks: a discrete-time walk typically performs one walk step per oracle query, whereas a continuous-time walk can effectively perform multiple walk steps per query while only counting query time. As a result, we show that continuous-time quantum walks can outperform their discrete-time counterparts, even though both achieve quadratic speedups over their corresponding classical random walks. To provide greater equity, we allow the discrete-time quantum walk to also take multiple walk steps per oracle query while only counting queries. Then it matches the continuous-time algorithm's runtime, but such …
Quantum walk on the line through potential barriers
Quantum walks are well-known for their ballistic dispersion, traveling $\Theta(t)$ away in $t$ steps, which is quadratically faster than a classical random walk's diffusive spreading. In physical implementations of the walk, however, the particle may need to tunnel through a potential barrier to hop, and a naive calculation suggests this could eliminate the ballistic transport. We show by explicit calculation, however, that such a loss does not occur. Rather, the $\Theta(t)$ dispersion is retained, with only the coefficient changing, which additionally gives a way to detect and quantify the hopping errors in experiments.
Faster Quantum Walk Search on a Weighted Graph
A randomly walking quantum particle evolving by Schr\"odinger's equation searches for a unique marked vertex on the "simplex of complete graphs" in time $\Theta(N^{3/4})$. In this paper, we give a weighted version of this graph that preserves vertex-transitivity, and we show that the time to search on it can be reduced to nearly $\Theta(\sqrt{N})$. To prove this, we introduce two novel extensions to degenerate perturbation theory: an adjustment that distinguishes the weights of the edges, and a method to determine how precisely the jumping rate of the quantum walk must be chosen.
Grover Search with Lackadaisical Quantum Walks
The lazy random walk, where the walker has some probability of staying put, is a useful tool in classical algorithms. We propose a quantum analogue, the lackadaisical quantum walk, where each vertex is given $l$ self-loops, and we investigate its effects on Grover's algorithm when formulated as search for a marked vertex on the complete graph of $N$ vertices. For the discrete-time quantum walk using the phase flip coin, adding a self-loop to each vertex boosts the success probability from 1/2 to 1. Additional self-loops, however, decrease the success probability. Using instead the Ambainis, Kempe, and Rivosh (2005) coin, adding self-loops simply slows down the search. These coins also diffe…
Doubling the success of quantum walk search using internal-state measurements
In typical discrete-time quantum walk algorithms, one measures the position of the walker while ignoring its internal spin/coin state. Rather than neglecting the information in this internal state, we show that additionally measuring it doubles the success probability of many quantum spatial search algorithms. For example, this allows Grover's unstructured search problem to be solved with certainty, rather than with probability 1/2 if only the walker's position is measured, so the additional measurement yields a search algorithm that is twice as fast as without it, on average. Thus the internal state of discrete-time quantum walks holds valuable information that can be utilized to improve a…
Stationary states in quantum walk search
When classically searching a database, having additional correct answers makes the search easier. For a discrete-time quantum walk searching a graph for a marked vertex, however, additional marked vertices can make the search harder by causing the system to approximately begin in a stationary state, so the system fails to evolve. In this paper, we completely characterize the stationary states, or 1-eigenvectors, of the quantum walk search operator for general graphs and configurations of marked vertices by decomposing their amplitudes into uniform and flip states. This infinitely expands the number of known stationary states and gives an optimization procedure to find the stationary state c…
Quantum Walk Search with Time-Reversal Symmetry Breaking
We formulate Grover's unstructured search algorithm as a chiral quantum walk, where transitioning in one direction has a phase conjugate to transitioning in the opposite direction. For small phases, this breaking of time-reversal symmetry is too small to significantly affect the evolution: the system still approximately evolves in its ground and first excited states, rotating to the marked vertex in time $\pi \sqrt{N} / 2$. Increasing the phase does not change the runtime, but rather changes the support for the 2D subspace, so the system evolves in its first and second excited states, or its second and third excited states, and so forth. Apart from the critical phases corresponding to these…
Diagrammatic approach to quantum search
We introduce a simple diagrammatic approach for estimating how a randomly walking quantum particle searches on a graph in continuous-time, which involves sketching small weighted graphs with self-loops and considering degenerate perturbation theory's effects on them. Using this method, we give the first example of degenerate perturbation theory solving search on a graph whose evolution occurs in a subspace whose dimension grows with $N$.
Engineering the Success of Quantum Walk Search Using Weighted Graphs
Continuous-time quantum walks are natural tools for spatial search, where one searches for a marked vertex in a graph. Sometimes, the structure of the graph causes the walker to get trapped, such that the probability of finding the marked vertex is limited. We give an example with two linked cliques, proving that the captive probability can be liberated by increasing the weights of the links. This allows the search to succeed with probability 1 without increasing the energy scaling of the algorithm. Further increasing the weights, however, slows the runtime, so the optimal search requires weights that are neither too weak nor too strong.
Quantum Walk Search on Johnson Graphs
The Johnson graph $J(n,k)$ is defined by $n$ symbols, where vertices are $k$-element subsets of the symbols, and vertices are adjacent if they differ in exactly one symbol. In particular, $J(n,1)$ is the complete graph $K_n$, and $J(n,2)$ is the strongly regular triangular graph $T_n$, both of which are known to support fast spatial search by continuous-time quantum walk. In this paper, we prove that $J(n,3)$, which is the $n$-tetrahedral graph, also supports fast search. In the process, we show that a change of basis is needed for degenerate perturbation theory to accurately describe the dynamics. This method can also be applied to general Johnson graphs $J(n,k)$ with fixed $k$.
Quantum Walk Search through Potential Barriers
An ideal quantum walk transitions from one vertex to another with perfect fidelity, but in physical systems, the particle may be hindered by potential energy barriers. Then the particle has some amplitude of tunneling through the barriers, and some amplitude of staying put. We investigate the algorithmic consequence of such barriers for the quantum walk formulation of Grover's algorithm. We prove that the failure amplitude must scale as $O(1/\sqrt{N})$ for search to retain its quantum $O(\sqrt{N})$ runtime; otherwise, it searches in classical $O(N)$ time. Thus searching larger "databases" requires increasingly reliable hop operations or error correction. This condition holds for both discre…
Correcting for Potential Barriers in Quantum Walk Search
A randomly walking quantum particle searches in Grover's $\Theta(\sqrt{N})$ iterations for a marked vertex on the complete graph of $N$ vertices by repeatedly querying an oracle that flips the amplitude at the marked vertex, scattering by a "coin" flip, and hopping. Physically, however, potential energy barriers can hinder the hop and cause the search to fail, even when the amplitude of not hopping decreases with $N$. We correct for these errors by interpreting the quantum walk search as an amplitude amplification algorithm and modifying the phases applied by the coin flip and oracle such that the amplification recovers the $\Theta(\sqrt{N})$ runtime.
Exceptional Quantum Walk Search on the Cycle
Quantum walks are standard tools for searching graphs for marked vertices, and they often yield quadratic speedups over a classical random walk's hitting time. In some exceptional cases, however, the system only evolves by sign flips, staying in a uniform probability distribution for all time. We prove that the one-dimensional periodic lattice or cycle with any arrangement of marked vertices is such an exceptional configuration. Using this discovery, we construct a search problem where the quantum walk's random sampling yields an arbitrary speedup in query complexity over the classical random walk's hitting time. In this context, however, the mixing time to prepare the initial uniform state…
Laplacian versus Adjacency Matrix in Quantum Walk Search
A quantum particle evolving by Schr\"odinger's equation contains, from the kinetic energy of the particle, a term in its Hamiltonian proportional to Laplace's operator. In discrete space, this is replaced by the discrete or graph Laplacian, which gives rise to a continuous-time quantum walk. Besides this natural definition, some quantum walk algorithms instead use the adjacency matrix to effect the walk. While this is equivalent to the Laplacian for regular graphs, it is different for non-regular graphs, and is thus an inequivalent quantum walk. We algorithmically explore this distinction by analyzing search on the complete bipartite graph with multiple marked vertices, using both the Lapla…
Oscillatory Localization of Quantum Walks Analyzed by Classical Electric Circuits
We examine an unexplored quantum phenomenon we call oscillatory localization, where a discrete-time quantum walk with Grover's diffusion coin jumps back and forth between two vertices. We then connect it to the power dissipation of a related electric network. Namely, we show that there are only two kinds of oscillating states, called uniform states and flip states, and that the projection of an arbitrary state onto a flip state is bounded by the power dissipation of an electric circuit. By applying this framework to states along a single edge of a graph, we show that low effective resistance implies oscillatory localization of the quantum walk. This reveals that oscillatory localization occ…
Full Characterization of Oscillatory Localization of Quantum Walks
Discrete-time quantum walks are well-known for exhibiting localization, a quantum phenomenon where the walker remains at its initial location with high probability. In companion with a joint Letter, we introduce oscillatory localization, where the walker alternates between two states. The walk is given by the flip-flop shift, which is easily defined on non-lattice graphs, and the Grover coin. Extremely simple examples of the localization exist, such as a walker jumping back and forth between two vertices of the complete graph. We show that only two kinds of states, called flip states and uniform states, exhibit exact oscillatory localization. So the projection of an arbitrary state onto the…