0000000001298779

AUTHOR

Javier Pitarch-jarque

showing 75 related works from this author

Metal Complexes as Receptors

2017

The role played by metal complexes as receptors of different substrates is discussed. For this purpose, several relevant examples of the work performed by different research groups have been briefly discussed. The metal complexes have been organized attending to the molecular topology of the ligands employed. The article ends with the description of metallocages in which at least one of the metal ions constituting the cage framework binds the guest through coordinative bonds.

MetalResearch groupsChemistryStereochemistryvisual_artMetal ions in aqueous solutionPolymer chemistryCryptandvisual_art.visual_art_mediummacromolecular substancesMolecular topologyReceptor
researchProduct

Water-Soluble Squaramide Dihydrates: N-Methylation Modulates the Occurrence of One- and Two-Dimensional Water Clusters through Hydrogen Bonding and D…

2018

Water confined in molecular size domains is distinct to bulk water. The altered interactions between adjacent water molecules, and between water molecules and molecular wall components of the confinement system, determine aspects of important phenomena in material science, biology, and nanotechnology. The structural determination of confined water, however, has proven to be challenging. Here, we describe the crystal structures of three related squaramides 1–3 whose molecular structures are modulated by the gradual incorporation of N-methyl groups to the squaramide moiety. The three squaramides differ in their hydrogen bonding capabilities due to the different degree of N-methylation of each…

010405 organic chemistryHydrogen bondChemistrySquaramideGeneral ChemistryCrystal structureN methylation010402 general chemistryCondensed Matter Physics01 natural sciences0104 chemical sciencesDipoleWater solubleChemical physicsMoleculeMoietyGeneral Materials ScienceCrystal Growth & Design
researchProduct

New polyamine drugs as more effective antichagas agents than benznidazole in both the acute and chronic phases.

2018

Abstract Despite the continuous research effort that has been made in recent years to find ways to treat the potentially life threatening Chagas disease (CD), this remains the third most important infectious disease in Latin America. CD is an important public health problem affecting 6–7 million people. Since the need to search for new drugs for the treatment of DC persists, in this article we present a panel of new polyamines based on the tripodal structure of tris(2-aminomethyl)amine (tren) that can be prepared at low cost with high yields. Moreover, these polyamines present the characteristic of being water-soluble and resistant to the acidic pH values of stomach, which would allow their…

Chagas diseaseTrypanosoma cruziPharmacology01 natural sciencesMicrobodies03 medical and health scienceschemistry.chemical_compoundIn vivoOral administrationDrug DiscoverymedicinePolyaminesAnimalsHumansChagas DiseaseTrypanosoma cruzi030304 developmental biologyPharmacology0303 health sciencesFluorenesbiology010405 organic chemistryOrganic ChemistryGeneral Medicinemedicine.diseasebiology.organism_classificationTrypanocidal Agents0104 chemical scienceschemistrySolubilityInfectious disease (medical specialty)BenznidazoleNitroimidazolesDrug DesignToxicityAcute DiseaseChronic DiseasePolyaminemedicine.drugEuropean journal of medicinal chemistry
researchProduct

Correlation between the molecular structure and the kinetics of decomposition of azamacrocyclic copper(II) complexes

2015

The formation of copper(II) complexes with symmetrical dinucleating macrocyclic ligands containing two either monomethylated (L1) or trimethylated (L2) diethylenetriamine (Medien or Me3dien) subunits linked by pyridine spacers has been studied by potentiometry. Potentiometric studies show that L1 has larger basicity than L2 as well as higher stability of its mono- and binuclear complexes. The crystal structures of L1·6HCl (1), [Cu2(L1)Cl2](CF3SO3)2 (2), [Cu2(L1)(OH)](ClO4)3·3H2O (3) and [Cu(L1)](ClO4)2 (4) show that L1 adopts different coordination modes when bound to copper(II). Whereas in 2, each copper(II) is bound to one Medien subunit and to one pyridine group, in 3 each metal center i…

StereochemistryChemistryLigandchemistry.chemical_elementProtonationCrystal structureCopperDecompositionInorganic Chemistrychemistry.chemical_compoundCrystallographyPyridineDiethylenetriamineMolecule
researchProduct

Pb2+complexes of small-cavity azamacrocyclic ligands: thermodynamic and kinetic studies

2017

The synthesis, acid-base behavior and Pb2+ coordination chemistry of the new aza-scorpiand like ligand 5-[2-(N-2-fluorenyl)ethylamino]-2,5,8-triaza[9]-2,6-pyridinophane (L1) have been studied by potentiometry, NMR and spectrofluorimetric titrations, and the results are compared with those obtained for the related compounds L2, lacking the fluorenyl group, and L3, the macrocycle lacking the pendant arm. The crystal structures obtained for complexes [PbL1][PbL1Cl](NO3)Cl2·4H2O (1) and [PbL3](ClO4)2 (2) reveal that the metal ion is located over the plane defined by the nitrogen atoms of the macrocyclic core due to its inability to accommodate the large Pb2+ ion in the macrocyclic cavity. For L…

0301 basic medicinechemistry.chemical_classification030102 biochemistry & molecular biologyStereochemistryLigandMetal ions in aqueous solutionCrystal structure010402 general chemistry01 natural sciencesDissociation (chemistry)0104 chemical sciencesCoordination complexIonInorganic ChemistryMetal03 medical and health sciencesCrystallographychemistryvisual_artvisual_art.visual_art_mediumLone pairDalton Transactions
researchProduct

Intermolecular binding modes in a novel [1 + 1] condensation 1H-pyrazole azamacrocycle: a solution and solid state study with evidence for CO2 fixati…

2013

The synthesis of a novel cyclophane (L1) consisting of a 1H-pyrazole moiety linked through methylene groups to a 1,5,9,13-tetraazadecane chain is described. As far as we know, this is one of the first reported syntheses of a [1 + 1] condensation 1H-pyrazole azamacrocyclic ligand. The crystal structures of the complexes [Cu2(H(H(-1)L1))(H(-1)L1)](ClO4)3·3.75H2O (1) and ([Cu2(H(H(-1)L1))(0.5)(H(-1)L1)(1.5)]2(ClO4)3Br2·4.2H2O (2) show that Cu(2+) coordination leads to formation of 2:2 Cu(2+):L dinuclear dimeric complexes in which the 1H-pyrazole units lose a proton behaving as bis(monodentate) bridging ligands. Unlike previously reported complexes of [2 + 2] pyrazole azamacrocycles, the pyrazo…

Models MolecularAza CompoundsDenticityMacrocyclic CompoundsStereochemistryLigandCrystal structurePyrazoleCarbon DioxideCrystallography X-RayInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryCoordination ComplexesPyridineMoietyPyrazolesPhysical and Theoretical ChemistryMethyleneCyclophaneInorganic chemistry
researchProduct

A water molecule in the interior of a 1H-pyrazole Cu2+ metallocage

2016

Water has a great tendency to associate through hydrogen bonding with water molecules or other hydrogen bond donor or acceptor groups. Here the case of a water molecule encapsulated in the interior of a metallocage receptor is presented. The association of four copper(II) ions and two aza-macrocyclic receptors in which two 1H-pyrazole units are connected by cadaverine diamines leads to the inclusion of a water molecule into the cage, as proved by X-ray analysis and infrared spectroscopy. The included water molecule shows no hydrogen bonding with any component of the cage presenting only a weak hydrogen bond with an oxygen atom of a perchlorate counter-anion. The IR stretching vibrations pre…

010405 organic chemistryHydrogen bondInorganic chemistryInfrared spectroscopychemistry.chemical_elementGeneral ChemistryPyrazole010402 general chemistry01 natural sciencesAcceptorCopperCatalysis0104 chemical sciencesIonchemistry.chemical_compoundCrystallographyPerchloratechemistryMaterials ChemistryMoleculeNew Journal of Chemistry
researchProduct

Influence of the chain length and metal : ligand ratio on the self-organization processes of Cu2+ complexes of [1 + 1] 1H-pyrazole azamacrocycles

2020

Three new [1 + 1] macrocycles formed by the reaction of 1H-3,5-bis(chloromethyl)pyrazole with the tosylated amines 1,4,7,10-tetraazadecane (L1), 1,4,8,11-tetraazaundecane (L2) and 1,5,10,14-tetraazatetradecane (L3) are described. Potentiometric studies and HR-ESI-Mass spectrometry show the formation of dimeric binuclear Cu2+ complexes whose organization depends on the type of hydrocarbon chains connecting the amine groups. Furthermore, trinuclear or/and tetranuclear complexes are formed depending also on the length of the polyaminic bridge and on the sequence of the hydrocarbon chains. The crystal structures of the [2 + 2] [Cu2(H(H−1L2))2](ClO4)4·4H2O (1) and [Cu2(H−1L2)2](ClO4)2 (2) comple…

Inorganic ChemistryCrystallographychemistry.chemical_compoundDenticityChemistryLigandMetal ions in aqueous solutionOctahedral molecular geometryAmine gas treatingProtonationCrystal structurePyrazoleDalton Transactions
researchProduct

Synthesis, Characterization, and Cu(2+) Coordination Studies of a 3-Hydroxy-4-pyridinone Aza Scorpiand Derivative.

2016

The synthesis, acid-base behavior, and Cu(2+) coordination chemistry of a new ligand (L1) consisting of an azamacrocyclic core appended with a lateral chain containing a 3-hydroxy-2-methyl-4(1H)-pyridinone group have been studied by potentiometry, cyclic voltammetry, and NMR and UV-vis spectroscopy. UV-vis and NMR studies showed that phenolate group was protonated at the highest pH values [log K = 9.72(1)]. Potentiometric studies point out the formation of Cu(2+) complexes of 1:2, 2:2, 4:3, 1:1, and 2:1 Cu(2+)/L1 stoichiometries. UV-vis analysis and electrochemical studies evidence the implication of the pyridinone moieties in the metal coordination of the 1:2 Cu(2+)/L1 complexes. L1 shows …

inorganic chemicalsMagnetic Resonance SpectroscopyStereochemistryPyridinesPyridonesPotentiometric titrationProtonationChemistry Techniques Synthetic010402 general chemistry010403 inorganic & nuclear chemistryElectrochemistryCrystallography X-Ray01 natural sciencesMedicinal chemistryAntioxidantsCoordination complexInorganic Chemistrychemistry.chemical_compoundStructure-Activity RelationshipCoordination ComplexesHumansChelationPhysical and Theoretical ChemistryCell ProliferationChelating Agentschemistry.chemical_classificationLigandHydrogen-Ion Concentration0104 chemical scienceschemistryPotentiometrySpectrophotometry UltravioletCyclic voltammetryDerivative (chemistry)CopperHeLa CellsInorganic chemistry
researchProduct

Water and oxoanion encapsulation chemistry in a 1H-pyrazole azacryptand

2019

Anion complexes of the cryptand built with the tripodal amine tris(2-aminoethyl)amine, known as tren, with water and several oxoanions of biological and environmental interest (nitrate, sulfate, phosphate, perchlorate and arsenate) have been crystallized from aqueous solution and resolved with single-crystal X-ray diffraction. All crystals show guest species encapsulated in the interior of the cavity as well as, in some cases, sitting in the grooves defined by the arms of the macrocycle. Hydrogen bonding and electrostatic interactions play a major role in anion binding to the host. The macrocycle is able to encapsulate anions in a wide range of protonation degrees. Solution studies have bee…

Aqueous solutionChemistryHydrogen bondCryptandProtonation02 engineering and technologyGeneral ChemistryPyrazole010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesPerchloratechemistry.chemical_compoundPolymer chemistryMaterials ChemistryAmine gas treating0210 nano-technologyAnion bindingNew Journal of Chemistry
researchProduct

Methylation as an effective way to generate SOD-activity in copper complexes of scorpiand-like azamacrocyclic receptors

2018

Abstract Methylation of the secondary amine groups of a scorpiand-type ligand consisting of a pyridine spacer connected through methylene groups to a tris(2-aminomethyl) unit with the pendant arm further functionalised with a 3-pyridine unit leads to a ligand whose Cu(II) complex exhibits threefold enhanced SOD activity with respect to the non-methylated ligand. Potentiometric studies indicate the formation of [CuL] 2+ species with a stability three orders of magnitude lower than that formed with the related non-methylated ligand. Kinetic studies indicate that methylation of the secondary nitrogens causes a deceleration of both the complex formation and the acid-induced dissociation of the …

Tris010405 organic chemistryChemistryPotentiometric titration010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistryRedoxDissociation (chemistry)0104 chemical sciencesInorganic ChemistryMetalchemistry.chemical_compoundvisual_artPyridineMaterials Chemistryvisual_art.visual_art_mediumAmine gas treatingPhysical and Theoretical ChemistryMethyleneInorganica Chimica Acta
researchProduct

Coordination Chemistry of Cu2+ Complexes of Small N-Alkylated Tetra-azacyclophanes with SOD Activity

2018

A new tetraaza-pyridinophane macrocycle (L1) N-alkylated with two isopropyl and one methyl groups symmetrically disposed has been prepared and its behavior compared with those of the unsubstituted pyridinophane (L3) and the related compound with three methyl groups (L2). The protonation studies show that, first, a proton binds to the central methylated amine group of L1, while, second protonation leads to a reorganization of the protons that are at this stage attached to the lateral isopropylated amines. The X-ray structure of [HL1]+ agrees with the UV–vis and NMR studies as well as with the results of DFT calculations. The stability of the Cu2+ complexes decreases on increasing the bulkine…

chemistry.chemical_classification010405 organic chemistryLigandProtonationCrystal structureAlkylation010402 general chemistry01 natural sciencesMedicinal chemistrySquare pyramidal molecular geometry0104 chemical sciencesCoordination complexInorganic ChemistrychemistryPhysical and Theoretical ChemistryIsopropylAlkylInorganic Chemistry
researchProduct

<strong>Synthesis and Platinum (II) Complexes of Different Polyazacyclophane Receptors</strong>

2015

During the last years, research on coordination chemistry of platinum has aroused great interest due to their potential biological applications. Herein, we report the interaction of PtCI42- with different polyazacyclophanes containing a pyridine unit as aromatic spacer. Formation of complexes has been studied by 1H and 195Pt NMR spectroscopy. Analysis of the recorded spectra of D2O solutions containing L and PtCl42- in a 1:1 molar ratio at acidic pH shows the evolution with time of the 1H and 195Pt signals. Different crystal structures have been solved by X-ray diffraction analysis. At acidic pHs, the metal ion is coordinated by the central amino group of the macrocyclic cavity and three ch…

chemistry.chemical_classificationchemistry.chemical_elementCrystal structureNuclear magnetic resonance spectroscopyChlorideCoordination complexMetalCrystallographychemistry.chemical_compoundchemistryBromidevisual_artPyridinemedicinevisual_art.visual_art_mediumPlatinummedicine.drugProceedings of MOL2NET, International Conference on Multidisciplinary Sciences
researchProduct

Boehmite Supported Pyrene Polyamine Systems as Probes for Iodide Recognition

2013

New organic–inorganic fluorescent probes made by attaching the tripodal polyamine (tris(2-aminoethyl))amine (tren), propylamine, or diethylenetriamine functionalized with pyrene as a fluorophore to an γ-aluminum oxohydroxide matrix have been prepared and studied both in solution and supported on the surface of boehmite nanoparticles. Both kinds of systems have been revealed as sensitive and selective fluorescence turn-off chemosensors for iodide in aqueous solution with an estimated detection limit that reaches 36 ppb. The recognition characteristics and photophysical properties of these molecules are essentially preserved when they are grafted to the surface of the particles. Since the nan…

chemistry.chemical_classificationBoehmiteAqueous solutionFluorophoreChemistryInorganic chemistryIodideNanoparticlePropylamineSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundGeneral EnergyDiethylenetriaminePyrenePhysical and Theoretical ChemistryThe Journal of Physical Chemistry C
researchProduct

Monoamide Derivatives of EDTA Incorporating Pendent Carboxylates or Pyridyls: Synthesis, Metal Binding, and Crystal Structure of a Dinuclear Ca2+ Com…

2017

EDTA is a powerful, cheap and widely-used chelating unit for a large range of metal ions. To link it covalently to other molecules, the formation of an amide bond using one of the carboxylates is an attractive and simple approach, even though it may compromise metal ion binding as one of the four carboxylate donors is lost. Here we undertake a quantitative study of the metal ion binding of two new mono-amide derivatives of EDTA, namely AmGly1 and AmPy1, featuring an additional coordinating carboxylate or pyridyl group in the amide, respectively. The compounds are conveniently synthesised through alkylation of the tris-t-butyl ester of ethylenediamine-triacetic acid with the appropriate α-ch…

inorganic chemicalsAqueous solution010405 organic chemistryStereochemistryChemistryMetal ions in aqueous solutionGeneral ChemistryCrystal structure010402 general chemistry01 natural sciences0104 chemical scienceschemistry.chemical_compoundAmidePolymer chemistryMoleculeChelationCarboxylateCoordination geometryChemistrySelect
researchProduct

Selective encapsulation of a chloride anion in a 1H-pyrazole Cu2+ metallocage

2021

A self-assembled metallobox from copper(ii) and two macrocycles containing 1H-pyrazole ligands has been prepared. The internal cavity of the box is able to selectively encapsulate a single chloride anion over any other halide anion.

Internal cavityHalidechemistry.chemical_elementPyrazoleCombinatorial chemistryChlorideCopperEncapsulation (networking)IonInorganic Chemistrychemistry.chemical_compoundchemistrymedicinemedicine.drugDalton Transactions
researchProduct

From isolated 1H-pyrazole cryptand anion receptors to hybrid inorganic-organic 1D helical polymeric anion receptors

2015

We report a novel 1-D helical coordination polymer formed by protonated polyamine 1H-pyrazole cryptands interconnected by Cu2+ metal ions that are able to encapsulate anionic species behaving as a multianion receptor. Switching from a monomeric receptor to a polymeric receptor is activated by metal ions and pH.

kemiaChemistryStereochemistryCoordination polymerMetal ions in aqueous solutionCryptandreceptorsProtonationPyrazolechemistryInorganic Chemistrychemistry.chemical_compoundMonomerPolymer chemistryPolyamineReceptorta116Dalton Transactions 44: 7761-7764 (2015)
researchProduct

About the relevance of anion-π interactions in water.

2021

Anion-π interactions are emerging as exotic features with potential applications in chemistry. In the last years, their relevance in living systems has been outlined, and so far there is no concluding significant evidence recognized about the participation of anion-π interactions in water because anion-π sensors contain large aromatic hydrophobic surfaces with limited solubility. By transforming a neutral heterocycle (for example quinoline) into its corresponding salt (quinolinium), we have been able to overcome these solubility issues, and new cationic water-soluble fluorophores have been prepared. Herein, we used N-alkylated heterocycles as π-acidic surfaces to shed light on the nature of…

Inorganic Chemistrychemistry.chemical_classificationchemistry.chemical_compoundHydrophobic surfacesComputational chemistryChemistryQuinolineCationic polymerizationSalt (chemistry)Vis spectraSolubilityFluorescenceIonDalton transactions (Cambridge, England : 2003)
researchProduct

Bicyclo[2.2.2]octane-1,4-dicarboxylic acid: towards transparent metal–organic frameworks

2017

The preparation of transparent porous materials can offer a different access towards the study of molecules under solid confined space. Metal-organic frameworks represent a unique opportunity due to their tunable pore size, however aromatic linkers present strong absorption and reduce the transparency. Herein, we report the first example of a MOF with bicyclic organic dicarboxylic linkers and its use as a solid solvent.

chemistry.chemical_classificationMaterials scienceBicyclic molecule02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCombinatorial chemistry0104 chemical sciencesInorganic ChemistrySolventchemistry.chemical_compoundDicarboxylic acidchemistryOrganic chemistryMoleculeMetal-organic frameworkAbsorption (chemistry)0210 nano-technologyPorous mediumOctaneDalton Transactions
researchProduct

>3 + 1 = 6 + 2> In Cu(ii) coordination chemistry of 1H-pyrazole aza cryptands

2015

A polyazamacrocycle formed from two tris(2-aminoethyl)amine units connected by 1H-pyrazole units shows unique hexanuclear Cu(ii) complexes by combination of two binuclear Cu(ii) cryptand complexes through pyrazolate moieties belonging to both cryptands. The formation of these dimeric entities has been proven both in solution by potentiometric studies and mass spectroscopy and in the solid state by X-ray diffraction of crystals of three different batches of formulae [Cu6(H-3L)2(H2O)2](TsO)6·22H2O (2), [Cu6(H-3L)2(NO3)2](NO3)4·2H2O (3) and [Cu6(H-3L)2Cl2]Cl4·(C4H5N3O2)2·14.35H2O (4). The hexanuclear unit in 2 and 4 can be viewed like three magnetically independent binuclear complexes with J =…

Inorganic ChemistryTrischemistry.chemical_classificationCrystallographychemistry.chemical_compoundchemistryStereochemistryPotentiometric titrationCryptandSolid-stateAmine gas treatingPyrazoleCoordination complex
researchProduct

On the Antibacterial Activity of Azacarboxylate Ligands: Lowered Metal Ion Affinities for Bis-amide Derivatives of EDTA do not mean Reduced Activity.

2018

EDTA is widely used as an inhibitor of bacterial growth, affecting the uptake and control of metal ions by microorganisms. We describe the synthesis and characterisation of two symmetrical bis-amide derivatives of EDTA, featuring glycyl or pyridyl substituents: AmGly2 and AmPy2 . Metal ion affinities (logK) have been evaluated for a range of metals (Mg2+ , Ca2+ , Fe3+ , Mn2+ , Zn2+ ), revealing less avid binding compared to EDTA. The solid-state structures of AmGly2 and of its Mg2+ complex have been determined crystallographically. The latter shows an unusual 7-coordinate, capped octahedral Mg2+ centre. The antibacterial activities of the two ligands and of EDTA have been evaluated against …

0301 basic medicineStaphylococcus aureusMetal ions in aqueous solution030106 microbiologyBacterial growthmedicine.disease_causeLigandsMedicinal chemistryCatalysisMetal03 medical and health scienceschemistry.chemical_compoundAmidemedicineEscherichia coliEscherichia coliIonsChemistryLigandOrganic ChemistryGeneral ChemistryAmidesAnti-Bacterial Agents030104 developmental biologyMetalsvisual_artvisual_art.visual_art_mediumGrowth inhibitionAntibacterial activityChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Homo- and Heterobinuclear Cu2+ and Zn2+ Complexes of Ditopic Aza Scorpiand Ligands as Superoxide Dismutase Mimics

2017

Two polytopic aza-scorpiand-like ligands, 6-[7-(diaminoethyl)-3,7-diazaheptyl]-3,6,9-triaza-1-(2,6-pyridina)cyclodecaphane (L1) and 6-[6′-[3,6,9-triaza-1-(2,6-pyridina)cyclodecaphan-6-yl]-3-azahexyl]-3,6,9-triaza-1-(2,6-pyridina)cyclodecaphane (L2), have been synthesized. The acid–base behavior and Cu2+, Zn2+, and Cu2+/Zn2+ mixed coordination have been analyzed by potentiometry, cyclic voltammetry, and UV–vis spectroscopy. The resolution of the crystal structures of [Cu2L2Cl2](ClO4)2·1.67H2O (1), [Cu2HL2Br2](ClO4)3·1.5H2O (2), and [CuZnL2Cl2](ClO4)2·1.64H2O (3) shows, in agreement with the solution data, the formation of homobinuclear Cu2+/Cu2+ and heterobinuclear Cu2+/Zn2+ complexes. The m…

biology010405 organic chemistryChemistryLigandStereochemistryMetal ions in aqueous solutionCrystal structure010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistrySuperoxide dismutaseCrystallographybiology.proteinPhysical and Theoretical ChemistryCyclic voltammetrySpectroscopyStoichiometryInorganic Chemistry
researchProduct

CCDC 1912383: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

Space GroupCrystallography61H161H251H-1481114182326-octaza-625(35)16(53)-tripyrazolabicyclo[9.9.9]nonacosaphan-14814182327-heptaium perchlorate clathrate hexaperchlorate tetrahydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 973978: Experimental Crystal Structure Determination

2013

Related Article: Raquel Belda, Javier Pitarch-Jarque, Conxa Soriano, José M. Llinares, Salvador Blasco, Jesús Ferrando-Soria, and Enrique García-España|2013|Inorg.Chem.|52|10795|doi:10.1021/ic400645t

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu2-3711151819-hexaazabicyclo[15.2.1]icosa-1(19)17(20)-dien-18-yl)-carbonato-aqua-tri-copper(ii) diperchlorate octahydrateExperimental 3D Coordinates
researchProduct

CCDC 1559249: Experimental Crystal Structure Determination

2017

Related Article: Aida Nebot-Guinot, Andrea Liberato, M. Angeles Máñez, M. Paz Clares, Antonio Doménech, Javier Pitarch-Jarque, Alvaro Martínez-Camarena, Manuel G. Basallote, Enrique García-España|2018|Inorg.Chim.Acta|472|139|doi:10.1016/j.ica.2017.08.044

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters39-dimethyl-6-{2-[methyl(pyridinium-3-ylmethyl)ammonio]ethyl}-615-diaza-39-diazoniabicyclo[9.3.1]pentadeca-1(15)1113-triene tetrakis(perchlorate) hydrateExperimental 3D Coordinates
researchProduct

CCDC 1939485: Experimental Crystal Structure Determination

2021

Related Article: Javier Pitarch-Jarque, Ramón J. Zaragozá, Rafael Ballesteros, Belen Abarca, Enrique Garcia-España, Begoña Verdejo, Rafael Ballesteros-Garrido|2021|Dalton Trans.|50|6834|doi:10.1039/D1DT00771H

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-({35-bis[(3-methyl[123]triazolo[15-a]pyridin-2-ium-2-yl)methyl]phenyl}methyl)-3-methyl-2H-[123]triazolo[15-a]pyridin-8-ium tris(bromide) hydrateExperimental 3D Coordinates
researchProduct

CCDC 1009322: Experimental Crystal Structure Determination

2015

Related Article: Laura Acosta-Rueda, Estefanía Delgado-Pinar, Javier Pitarch-Jarque, Alexis Rodríguez, Salvador Blasco, Jorge González, Manuel G. Basallote, Enrique García-España|2015|Dalton Trans.|44|8255|doi:10.1039/C5DT00408J

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters620-Dimethyl-2930-diaza-369172023-hexaazoniatricyclo[23.3.1.11115]triaconta-1(29)11(30)12142527-hexaene hexachloride hexahydrateExperimental 3D Coordinates
researchProduct

CCDC 973974: Experimental Crystal Structure Determination

2013

Related Article: Raquel Belda, Javier Pitarch-Jarque, Conxa Soriano, José M. Llinares, Salvador Blasco, Jesús Ferrando-Soria, and Enrique García-España|2013|Inorg.Chem.|52|10795|doi:10.1021/ic400645t

bis(mu2-311151819-pentaaza-7-azoniabicyclo[15.2.1]icosa-1(19)17(20)-dien-18-yl)-di-copper(ii) triperchlorate hydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1468808: Experimental Crystal Structure Determination

2016

Related Article: Javier Pitarch-Jarque, Raquel Belda, Salvador Blasco, Pilar Navarro, Roberto Tejero, José Miguel Junquera-Hernández, Vicente Pérez-Mondéjar, Enrique García-España|2016|New J.Chem.|40|5670|doi:10.1039/C5NJ03234B

bis(mu4-39121316222526-Octa-azatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraene)-diaqua-bis(perchlorato)-tetra-copper diperchlorate dihydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1559236: Experimental Crystal Structure Determination

2017

Related Article: Aida Nebot-Guinot, Andrea Liberato, M. Angeles Máñez, M. Paz Clares, Antonio Doménech, Javier Pitarch-Jarque, Alvaro Martínez-Camarena, Manuel G. Basallote, Enrique García-España|2018|Inorg.Chim.Acta|472|139|doi:10.1016/j.ica.2017.08.044

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(mu-2-[39-dimethyl-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-6-yl]-N-methyl-N-[(pyridin-3-yl)methyl]ethan-1-amine)-(mu-2-[39-dimethyl-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-6-yl]-N-methyl-N-[(pyridin-3-yl)methyl]ethan-1-aminium)-di-copper(ii) pentakis(perchlorate) monohydrate
researchProduct

CCDC 973976: Experimental Crystal Structure Determination

2013

Related Article: Raquel Belda, Javier Pitarch-Jarque, Conxa Soriano, José M. Llinares, Salvador Blasco, Jesús Ferrando-Soria, and Enrique García-España|2013|Inorg.Chem.|52|10795|doi:10.1021/ic400645t

Space GroupCrystallographyCrystal System(37111521-pentaazabicyclo[15.3.1]henicosa-1(21)1719-triene)-copper(ii) diperchlorateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1953932: Experimental Crystal Structure Determination

2020

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-3711151819-hexaazabicyclo[15.2.1]icosa-1(20)17-diene)-bis(mu-hydroxo)-chloro-di-copper-di-palladium bis(mu-3711151819-hexaazabicyclo[15.2.1]icosa-1(20)17-diene)-bis(mu-hydroxo)-chloro-copper-tri-palladium diperchlorate bromide chloride hydrateExperimental 3D Coordinates
researchProduct

CCDC 1814073: Experimental Crystal Structure Determination

2018

Related Article: Marta Ximenis, Javier Pitarch-Jarque, Salvador Blasco, Carmen Rotger, Enrique García-España, Antonio Costa|2018|Cryst.Growth Des.|18|4420|doi:10.1021/acs.cgd.8b00401

Space GroupCrystallographyCrystal System26-dimethyl-26-diazabicyclo[5.2.0]non-1(7)-ene-89-dione dihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1009323: Experimental Crystal Structure Determination

2015

Related Article: Laura Acosta-Rueda, Estefanía Delgado-Pinar, Javier Pitarch-Jarque, Alexis Rodríguez, Salvador Blasco, Jorge González, Manuel G. Basallote, Enrique García-España|2015|Dalton Trans.|44|8255|doi:10.1039/C5DT00408J

Space GroupCrystallographyCrystal System(mu2-620-Dimethyl-3691720232930-octaazatricyclo[23.3.1.11115]triaconta-1(29)11(30)12142527-hexaene)-dichloro-di-copper(ii) bis(trifluoromethanesulfonate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1009325: Experimental Crystal Structure Determination

2015

Related Article: Laura Acosta-Rueda, Estefanía Delgado-Pinar, Javier Pitarch-Jarque, Alexis Rodríguez, Salvador Blasco, Jorge González, Manuel G. Basallote, Enrique García-España|2015|Dalton Trans.|44|8255|doi:10.1039/C5DT00408J

Space GroupCrystallography(620-dimethyl-3691720232930-octaazatricyclo[23.3.1.11115]triaconta-1(29)11(30)12142527-hexaene)-copper(ii) diperchlorateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1814074: Experimental Crystal Structure Determination

2018

Related Article: Marta Ximenis, Javier Pitarch-Jarque, Salvador Blasco, Carmen Rotger, Enrique García-España, Antonio Costa|2018|Cryst.Growth Des.|18|4420|doi:10.1021/acs.cgd.8b00401

Space GroupCrystallography2-methyl-26-diazabicyclo[5.2.0]non-1(7)-ene-89-dione dihydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 892312: Experimental Crystal Structure Determination

2016

Related Article: Javier Pitarch-Jarque, Raquel Belda, Salvador Blasco, Pilar Navarro, Roberto Tejero, José Miguel Junquera-Hernández, Vicente Pérez-Mondéjar, Enrique García-España|2016|New J.Chem.|40|5670|doi:10.1039/C5NJ03234B

Space GroupCrystallography(mu2-39121316222526-Octa-azatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraenato)-di-copper bis(mu4-39121316222526-octa-azatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraene)-diaqua-tetra-copper octaperchlorate trihydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1827335: Experimental Crystal Structure Determination

2018

Related Article: Álvaro Martínez-Camarena, Andrea Liberato, Estefanía Delgado-Pinar, Andrés G. Algarra, Javier Pitarch-Jarque, José M. Llinares, M. Ángeles Mañez, Antonio Domenech-Carbó, Manuel G. Basallote, Enrique García-España|2018|Inorg.Chem.|57|10961|doi:10.1021/acs.inorgchem.8b01492

chloro-[6-methyl-39-bis(propan-2-yl)-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-triene]-copper(ii) perchlorateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1814075: Experimental Crystal Structure Determination

2018

Related Article: Marta Ximenis, Javier Pitarch-Jarque, Salvador Blasco, Carmen Rotger, Enrique García-España, Antonio Costa|2018|Cryst.Growth Des.|18|4420|doi:10.1021/acs.cgd.8b00401

Space GroupCrystallography26-diazabicyclo[5.2.0]non-1(7)-ene-89-dione dihydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 983275: Experimental Crystal Structure Determination

2015

Related Article: Javier Pitarch-Jarque, Raquel Belda, Laura García-España, José M. Llinares, FangFang Pan, Kari Rissanen, Pilar Navarro, Enrique García-España|2015|Dalton Trans.|44|7761|doi:10.1039/C5DT00763A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu3-1781420213233-octaaza-41117242936-hexaazoniapentacyclo[12.12.12.169.11922.13134]hentetraconta-6(41)819(40)2131(39)33-hexaene)-nonachloro-tri-copper nonakis(chloride) unknown solvate hydrate]Experimental 3D Coordinates
researchProduct

CCDC 1953930: Experimental Crystal Structure Determination

2020

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(3610131617-hexaazabicyclo[13.2.1]octadeca-1(17)15(18)-dienato)-di-copper(ii) bromide chloride hydrateExperimental 3D Coordinates
researchProduct

CCDC 1990725: Experimental Crystal Structure Determination

2020

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

Space GroupCrystallographyCrystal Systembis(mu-3610131617-hexaazabicyclo[13.2.1]octadeca-1(18)15-dienato)-di-copper diperchlorateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1030676: Experimental Crystal Structure Determination

2015

Related Article: Javier Pitarch-Jarque, Raquel Belda, Laura García-España, José M. Llinares, FangFang Pan, Kari Rissanen, Pilar Navarro, Enrique García-España|2015|Dalton Trans.|44|7761|doi:10.1039/C5DT00763A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1781420213233-octaaza-41117242936-hexaazoniapentacyclo[12.12.12.169.11922.13134]hentetraconta-6(41)819(40)2131(39)33-hexaene hexakis(chloride) octahydrateExperimental 3D Coordinates
researchProduct

CCDC 1507631: Experimental Crystal Structure Determination

2017

Related Article: Lluís Guijarro, Mario Inclán, Javier Pitarch-Jarque, Antonio Doménech-Carbó, Javier U. Chicote, Sandra Trefler, Enrique García-España, Antonio García-España, Begoña Verdejo|2017|Inorg.Chem.|56|13748|doi:10.1021/acs.inorgchem.7b01756

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(mu-3-(36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-6-yl)-N-(2-(36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-6-yl)ethyl)propylammonium)-dibromo-di-copper(ii) triperchlorate sesquihydrateExperimental 3D Coordinates
researchProduct

CCDC 1468807: Experimental Crystal Structure Determination

2016

Related Article: Javier Pitarch-Jarque, Raquel Belda, Salvador Blasco, Pilar Navarro, Roberto Tejero, José Miguel Junquera-Hernández, Vicente Pérez-Mondéjar, Enrique García-España|2016|New J.Chem.|40|5670|doi:10.1039/C5NJ03234B

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-39121316222526-octaazatricyclo[22.2.1.11114]octacosa-1(27)1114(28)24-tetraen-1225-diyl)-diperchlorato-diaqua-tetra-copper (mu-39121316222526-octaazatricyclo[22.2.1.11114]octacosa-1(27)1114(28)24-tetraen-1225-diyl)-diperchlorato-di-copper diperchlorate hydrateExperimental 3D Coordinates
researchProduct

CCDC 983272: Experimental Crystal Structure Determination

2015

Related Article: Javier Pitarch-Jarque, Raquel Belda, Francesc Lloret, Jesús Ferrando-Soria, Pilar Navarro, Alberto Lopera, Enrique García-España|2015|Dalton Trans.|44|3378|doi:10.1039/C4DT03650F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-147811141720212429323336-tetradecaazapentacyclo[12.12.12.169.11922.13134]hentetraconta-6(41)81922(40)31(39)33-hexaene-72132-triyl)-diaqua-hexa-copper hexakis(4-methylbenzenesulfonate) docosahydrateExperimental 3D Coordinates
researchProduct

CCDC 1472832: Experimental Crystal Structure Determination

2016

Related Article: Luis M. López-Martínez, Javier Pitarch-Jarque, Àlvar Martínez-Camarena, Enrique García-España, Roberto Tejero, Hisila Santacruz-Ortega, Rosa-Elena Navarro, Rogerio R. Sotelo-Mundo, Mario Alberto Leyva-Peralta, Antonio Doménech-Carbó, and Begoña Verdejo|2016|Inorg.Chem.|55|7564|doi:10.1021/acs.inorgchem.6b01006

Space GroupCrystallographyCrystal System6-(2-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl)ethyl)-615-diaza-39-diazoniabicyclo[9.3.1]pentadeca-1(15)1113-triene diperchlorate hemihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 983271: Experimental Crystal Structure Determination

2015

Related Article: Javier Pitarch-Jarque, Raquel Belda, Francesc Lloret, Jesús Ferrando-Soria, Pilar Navarro, Alberto Lopera, Enrique García-España|2015|Dalton Trans.|44|3378|doi:10.1039/C4DT03650F

Space GroupCrystallographyCrystal System(mu-147811141720212429323336-tetradecaazapentacyclo[12.12.12.169.11922.13134]hentetraconta-6(41)81922(40)31(39)33-hexaene-721-diyl)-di-copper(ii) diperchlorate dihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 892315: Experimental Crystal Structure Determination

2016

Related Article: Javier Pitarch-Jarque, Raquel Belda, Salvador Blasco, Pilar Navarro, Roberto Tejero, José Miguel Junquera-Hernández, Vicente Pérez-Mondéjar, Enrique García-España|2016|New J.Chem.|40|5670|doi:10.1039/C5NJ03234B

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters91213222526-hexaaza-316-diazoniatricyclo[22.2.1.11114]octacosa-1(26)11(28)1324(27)-tetraene diperchlorateExperimental 3D Coordinates
researchProduct

CCDC 983274: Experimental Crystal Structure Determination

2015

Related Article: Javier Pitarch-Jarque, Raquel Belda, Francesc Lloret, Jesús Ferrando-Soria, Pilar Navarro, Alberto Lopera, Enrique García-España|2015|Dalton Trans.|44|3378|doi:10.1039/C4DT03650F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-147811141720212429323336-tetradecaazapentacyclo[12.12.12.169.11922.13134]hentetraconta-6(41)81922(40)31(39)33-hexaene-72132-triyl)-dichloro-hexa-copper tetrachloride 2-aminopyrimidin-4(1H)-one solvate hydrateExperimental 3D Coordinates
researchProduct

CCDC 1994847: Experimental Crystal Structure Determination

2021

Related Article: Javier Pitarch-Jarque, Hermas R. Jiménez, Elina Kalenius, Salvador Blasco, Alberto Lopera, M. Paz Clares, Kari Rissanen, Enrique García-España|2021|Dalton Trans.|50|9010|doi:10.1039/D1DT01302E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-39121316222526-octa-azatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraene-1216-diato)-tetra-copper tris(iodo)-copper tri-iodide iodide perchlorate unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1827337: Experimental Crystal Structure Determination

2018

Related Article: Álvaro Martínez-Camarena, Andrea Liberato, Estefanía Delgado-Pinar, Andrés G. Algarra, Javier Pitarch-Jarque, José M. Llinares, M. Ángeles Mañez, Antonio Domenech-Carbó, Manuel G. Basallote, Enrique García-España|2018|Inorg.Chem.|57|10961|doi:10.1021/acs.inorgchem.8b01492

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersaqua-[6-methyl-39-bis(propan-2-yl)-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-triene]-copper(ii) bis(perchlorate) monohydrateExperimental 3D Coordinates
researchProduct

CCDC 1939483: Experimental Crystal Structure Determination

2021

Related Article: Javier Pitarch-Jarque, Ramón J. Zaragozá, Rafael Ballesteros, Belen Abarca, Enrique Garcia-España, Begoña Verdejo, Rafael Ballesteros-Garrido|2021|Dalton Trans.|50|6834|doi:10.1039/D1DT00771H

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates11'1''-[benzene-135-triyltris(methylene)]tris(quinolin-1-ium) bromide dihydrate
researchProduct

CCDC 1912382: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

61H161H251H-1481114182326-octaza-61625(35)-tripyrazolabicyclo[9.9.9]nonacosaphan-462814162182325227-nonaium (hydrogen sulfate) clathrate bis(hydrogen sulfate) trisulfate hexahydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1939484: Experimental Crystal Structure Determination

2021

Related Article: Javier Pitarch-Jarque, Ramón J. Zaragozá, Rafael Ballesteros, Belen Abarca, Enrique Garcia-España, Begoña Verdejo, Rafael Ballesteros-Garrido|2021|Dalton Trans.|50|6834|doi:10.1039/D1DT00771H

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters22'2''-[benzene-135-triyltris(methylene)]tris([123]triazolo[15-a]quinolin-2-ium) bromide sesquihydrateExperimental 3D Coordinates
researchProduct

CCDC 1953929: Experimental Crystal Structure Determination

2020

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

Space GroupCrystallographyCrystal SystemCrystal Structurebis(mu-3610131617-hexaazabicyclo[13.2.1]octadeca-1(17)15(18)-dienato-10-ium)-di-copper(ii) tetraperchlorate tetrahydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 983273: Experimental Crystal Structure Determination

2015

Related Article: Javier Pitarch-Jarque, Raquel Belda, Francesc Lloret, Jesús Ferrando-Soria, Pilar Navarro, Alberto Lopera, Enrique García-España|2015|Dalton Trans.|44|3378|doi:10.1039/C4DT03650F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-147811141720212429323336-tetradecaazapentacyclo[12.12.12.169.11922.13134]hentetraconta-6(41)81922(40)31(39)33-hexaene-72132-triyl)-dinitrato-hexa-copper tetrakis(nitrate) dihydrateExperimental 3D Coordinates
researchProduct

CCDC 892316: Experimental Crystal Structure Determination

2016

Related Article: Javier Pitarch-Jarque, Raquel Belda, Salvador Blasco, Pilar Navarro, Roberto Tejero, José Miguel Junquera-Hernández, Vicente Pérez-Mondéjar, Enrique García-España|2016|New J.Chem.|40|5670|doi:10.1039/C5NJ03234B

Space GroupCrystallographyCrystal SystemCrystal Structure(mu-39121316222526-octaazatricyclo[22.2.1.11114]octacosa-1(26)11(28)1324(27)-tetraene-1225-diyl)-di-copper diperchlorate hemihydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1912384: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

Space GroupCrystallography61H161H251H-1481114182326-octaza-625(35)16(53)-tripyrazolabicyclo[9.9.9]nonacosaphan-4814182327-hexaium (dihydrogen arsenate) clathrate dihydrogen arsenate tetrakis(trifluoromethanesulfonate) arsoric acid trihydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1507632: Experimental Crystal Structure Determination

2017

Related Article: Lluís Guijarro, Mario Inclán, Javier Pitarch-Jarque, Antonio Doménech-Carbó, Javier U. Chicote, Sandra Trefler, Enrique García-España, Antonio García-España, Begoña Verdejo|2017|Inorg.Chem.|56|13748|doi:10.1021/acs.inorgchem.7b01756

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(mu-3-(36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-6-yl)-N-(2-(36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-6-yl)ethyl)propan-1-amine)-dichloro-copper-zinc diperchlorate hydrateExperimental 3D Coordinates
researchProduct

CCDC 1994844: Experimental Crystal Structure Determination

2021

Related Article: Javier Pitarch-Jarque, Hermas R. Jiménez, Elina Kalenius, Salvador Blasco, Alberto Lopera, M. Paz Clares, Kari Rissanen, Enrique García-España|2021|Dalton Trans.|50|9010|doi:10.1039/D1DT01302E

Space GroupCrystallographyCrystal Systembis(mu-39121316222526-octaazatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraene-1226-diyl)-dibromo-tetra-copper(ii) bis[(mu-39121316222526-octaazatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraene-1226-diyl)-di-copper(ii)] pentakis(bromide) tribromo-copper(i) unknown solvate hydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1508045: Experimental Crystal Structure Determination

2021

Related Article: Raminder S. Mulla, Javier Pitarch-Jarque, Enrique García-España, Tanya Desa, Elena Lurie-Luke, J. A. Gareth Williams|2017|Chem. Sel.|2|5045|doi:10.1002/slct.201700995

hexa-sodium bis(mu-22'-({2-[(carboxylatomethyl){2-[(carboxylatomethyl)amino]-2-oxoethyl}amino]ethyl}azanediyl)diacetato)-diaqua-di-calcium(ii) bis(chloride) hydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1009324: Experimental Crystal Structure Determination

2015

Related Article: Laura Acosta-Rueda, Estefanía Delgado-Pinar, Javier Pitarch-Jarque, Alexis Rodríguez, Salvador Blasco, Jorge González, Manuel G. Basallote, Enrique García-España|2015|Dalton Trans.|44|8255|doi:10.1039/C5DT00408J

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(mu2-Hydroxo)-(mu2-620-dimethyl-3691720232930-octaazatricyclo[23.3.1.11115]triaconta-1(29)11(30)12142527-hexaene)-di-copper(ii) triperchlorate dihydrateExperimental 3D Coordinates
researchProduct

CCDC 973975: Experimental Crystal Structure Determination

2013

Related Article: Raquel Belda, Javier Pitarch-Jarque, Conxa Soriano, José M. Llinares, Salvador Blasco, Jesús Ferrando-Soria, and Enrique García-España|2013|Inorg.Chem.|52|10795|doi:10.1021/ic400645t

Space GroupCrystallographyCrystal SystemCrystal Structurebis(mu2-3711151819-hexaazabicyclo[15.2.1]icosa-1(19)17(20)-dien-18-yl)-di-copper(ii) bromide perchlorate hydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1994845: Experimental Crystal Structure Determination

2021

Related Article: Javier Pitarch-Jarque, Hermas R. Jiménez, Elina Kalenius, Salvador Blasco, Alberto Lopera, M. Paz Clares, Kari Rissanen, Enrique García-España|2021|Dalton Trans.|50|9010|doi:10.1039/D1DT01302E

Space GroupCrystallographyCrystal Systembis(mu-39121316222526-octa-azatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraene-1216-diato)-(mu-chloro)-aqua-chloro-tetra-copper dichloride dihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1994846: Experimental Crystal Structure Determination

2021

Related Article: Javier Pitarch-Jarque, Hermas R. Jiménez, Elina Kalenius, Salvador Blasco, Alberto Lopera, M. Paz Clares, Kari Rissanen, Enrique García-España|2021|Dalton Trans.|50|9010|doi:10.1039/D1DT01302E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-39121316222526-octa-azatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraene-1216-diato)-tetra-aqua-tetra-copper bis(hexafluorophosphate) difluoride hydrateExperimental 3D Coordinates
researchProduct

CCDC 1827336: Experimental Crystal Structure Determination

2018

Related Article: Álvaro Martínez-Camarena, Andrea Liberato, Estefanía Delgado-Pinar, Andrés G. Algarra, Javier Pitarch-Jarque, José M. Llinares, M. Ángeles Mañez, Antonio Domenech-Carbó, Manuel G. Basallote, Enrique García-España|2018|Inorg.Chem.|57|10961|doi:10.1021/acs.inorgchem.8b01492

6-methyl-39-bis(propan-2-yl)-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-6-ium perchlorate hemihydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1953933: Experimental Crystal Structure Determination

2020

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-3711151819-hexaazabicyclo[15.2.1]icosa-1(20)17-dienato)-bis(mu-hydroxo)-tetra-copper perchlorate bromide chloride hydroxideExperimental 3D Coordinates
researchProduct

CCDC 1912380: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

Space GroupCrystallographyCrystal System61H161H251H-1481114182326-octaza-625(35)16(53)-tripyrazolabicyclo[9.9.9]nonacosaphan-146281114162182325227-undecaium (dihydrogen phosphate) clathrate decakis(dihydrogen phosphate) tetrahydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1507630: Experimental Crystal Structure Determination

2017

Related Article: Lluís Guijarro, Mario Inclán, Javier Pitarch-Jarque, Antonio Doménech-Carbó, Javier U. Chicote, Sandra Trefler, Enrique García-España, Antonio García-España, Begoña Verdejo|2017|Inorg.Chem.|56|13748|doi:10.1021/acs.inorgchem.7b01756

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(mu-3-(36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-6-yl)-N-(2-(36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-6-yl)ethyl)propan-1-amine)-dichloro-di-copper diperchlorate hydrateExperimental 3D Coordinates
researchProduct

CCDC 1912379: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters61H161H251H-1481114182326-octaza-625(35)16(53)-tripyrazolabicyclo[9.9.9]nonacosaphan-4814182327-hexaium nitrate clathrate pentanitrate pentahydrateExperimental 3D Coordinates
researchProduct

CCDC 973977: Experimental Crystal Structure Determination

2013

Related Article: Raquel Belda, Javier Pitarch-Jarque, Conxa Soriano, José M. Llinares, Salvador Blasco, Jesús Ferrando-Soria, and Enrique García-España|2013|Inorg.Chem.|52|10795|doi:10.1021/ic400645t

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu~2~-3711151819-hexaazabicyclo[15.2.1]icosa-1(19)17(20)-dien-18-yl)-carbonato-aqua-di-copper diperchlorate octahydrateExperimental 3D Coordinates
researchProduct

CCDC 1912378: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters61H161H251H-1481114182326-octaza-625(35)16(53)-tripyrazolabicyclo[9.9.9]nonacosaphan-814-diium diperchlorate dihydrate clathrate hydrateExperimental 3D Coordinates
researchProduct

CCDC 1508044: Experimental Crystal Structure Determination

2021

Related Article: Raminder S. Mulla, Javier Pitarch-Jarque, Enrique García-España, Tanya Desa, Elena Lurie-Luke, J. A. Gareth Williams|2017|Chem. Sel.|2|5045|doi:10.1002/slct.201700995

22'-((2-((carboxymethyl)(2-((carboxymethyl)amino)-2-oxoethyl)azaniumyl)ethyl)azaniumyl)diacetateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1912381: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters61H161H251H-1481114182326-octaza-61625(35)-tripyrazolabicyclo[9.9.9]nonacosaphan-4814182327-hexaium (dihydrogen phosphate) clathrate pentakis(dihydrogen phosphate) octahydrateExperimental 3D Coordinates
researchProduct