0000000001299211
AUTHOR
Klaus Jurkschat
Cyclic Dinuclear Organotin Cations Stabilized by Bulky Substituents
The syntheses of sterically congested 2,2-bis(diorganochloridostannyl)propane, Me2C(SnClR2)2 (1; R = CH(SiMe3)2), the related salts [cyclo-{Me2C(SnR2)2X}B(ArF)4] (2, X = Cl; 3, X = OAc; 4, X = OH; ArF = 3,5-(CF3)2C6H3), and the four-membered-ring cyclo-{Me2C(SnR2)2O} (5) are reported. The compounds have been characterized by elemental and EDX analyses, 1H, 11B, 13C, 19F, 29Si, and 119Sn NMR and IR spectroscopy, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction analysis.
The First Examples of a Crown Ether Intramolecularly Encapsulating Mono- and Diorganotin Dications: Synthesis and Structures of [PhSnCH2([16]crown-5)][ClO4]2and [HOSnCH2([16]crown-5)][Y]2(Y=ClO4, CF3SO3)
The reaction of silver perchlorate with [PhI 2 SnCH 2 ([16]crown-5)] (1) and [I 3 SnCH 2 ([16]crown-5)] (2) gave the organotin(IV)-substituted crown ether complexes [PhSnCH 2 ([16]crown-5)][ClO 4 ] 2 (3) and [HOSnCH 2 ([16]crown-5)][Y] 2 (4: Y= ClO 4 , 5: Y=CF3 S 03 ) , respectively. All compounds have been isolated as air-stable materials and characterised by 1 H, 13 C, 119 Sn and 119 Sn MAS (5) NMR spectroscopy, ESIMS spectrometry, elemental analysis and by single-crystal X-ray diffraction analysis. The molecular structures of 3-5 show that the tin(IV) cation fits perfectly into the crown ether cavity and is coordinated by the five oxygen atoms of the ring to give a pentagonal bipyramidal…
Syntheses, Structures and Reactivity of New Intramolecularly Coordinated Tin Alkoxides Based on an Enantiopure Ephedrine Derivative
The syntheses of the tin compounds [LSn]2 (2), spiro-L2Sn (3), [LSnW(CO)5]2 (4), [LSnBr2]2 (5), spiro-L2Sn·SnBr4 (6) and LSn[OC(O)Ph]2 (8), where L = MeN(CH2CMe2O)[(S)-CH(Me)-(R)-CH(Ph)O], and (Ph4P)2SnBr6 (7) are reported. The compounds were characterized by elemental analysis, multinuclear NMR spectroscopy including 119Sn cross polarisation–magic angle spinning NMR (CP–MAS) (2, 3–6), electrospray ionization mass spectrometry (2–4) and single crystal X-ray diffraction analysis (2, 2·C7H8, 3a, 3b, 4·C7H8, 5, 6·C7H8, 7).
Darstellung und struktur von (EtO)2P(O)CH2Si(Me)2CH2SnMe2Cl—ein sechsringchelat mit sesselkonformation und PO ⋯ Sn(Cl)Me2CH2-trigonaler bipyramide am Lewis-aciden Zinn
Abstract The title compound (EtO)2P(O)CH2Si(Me)2CH2SnMe2Cl (2) has been synthesized by reaction of the new functional Grignard reagent (EtO)2P(O)CH2CH2SiMe2CH2MgCl with Me3SnCl and subsequent treatment with Me2SnCl2. 2 crystallizes in the non-centrosymmetric orthorhombic space group P212121. The structure was refined to a final R-value of 0.0476. The tin atom is pentacoordinated and exhibits a nearly ideal trigonal-bipyramidal coordination (SnCl 2.518(3), Sn ⋯ O 2.371(5) A). This coordination results from a 6-membered chelate involving a chair conformation. The structure of 2 is compared with analogous compounds containing a PO ⋯ Sn- or CO ⋯ Sn-coordination in the first place and a noncy…
Dimeres und Trimers 1-Methyl-1-aza-5-stannabicyclo[3.3.01,5]-octan sulfid [MeN(CH2CH2CH2)2SnS]n, Röntgenstrukturanalyse des Dimeren und Gleichgewicht Dimer-Trimer gemäß 119Sn-NMR und FD-Massenspektrometrie
Abstract The crystal structure of the dimeric title compound has been determined and refined to R = 0.0266. The core of the nearly centrosymmetric dimer is formed by an almost perfect [SnS]2 rectangle (Sn-S 2.39 and 2.51 A). The two sulfur atoms of this rectangle establish the connecting edge of two distorted trigonal bipyramids around the two tin atoms (Sn … N 2.55 A). Solutions of the title compound contain in addition to the dimer (σ(119Sn) = −4.6 ppm) about 20% of the trimer (+ 10.3 ppm). By quick crystallization a mixture of both oligomers can be transferred into the solid state.
The Influence of Intramolecular Coordination and Ring Strain on the Polymerization Potential of Cyclic Stannasiloxanes
Organotin(IV) derivatives containing heteroditopic pyridyl-quinolin-8-olate ligands: Synthesis and structures
Abstract Six novel neutral organotin(IV) complexes, viz. [n-Bu2Sn(L4-PyAQ)2] 1, [Bz2Sn(L4-PyAQ)2] 2, [Ph2Sn(L4-PyAQ)2] 3, [Ph2Sn(L3-PyAQ)2] 4, [Bz3Sn(L4-PyAQ)] 5 and [Ph3Sn(L4-PyAQ)] 6 have been synthesized via reactions of 3/4-pyridyl-quinolin-8-ol pro-ligands, with appropriate diorganotin oxide and triorganotin hydroxide precursors, respectively. The compounds 1-6 were characterized in solution by means of NMR spectroscopy while the solid-state structures of 1, 6, and of the solvates 2·1.5C6H6, 3·0.25C6H6, 2·4·C6H6, and 5·0.5H2O were authenticated by single crystal X-ray diffraction analysis. In the solid-state, the tin centers in 1-2·4·C6H6 are hexacoordinated and reveal a distorted cis-…
Ring size control in diorganotin sulphides by intramolecular SnN coordination
Abstract The synthesis of intramolecularly coordinated organotin sulphides, [(Me2N CH2CH2CH2)2SnS]n (1) and [Me2NCH2CH2CH2Sn(Ph)S]n (2), is described. Compounds 1 and 2 are dimers in chloroform solution (n = 2). Compound 1 forms a centrosymmetric dimer with a planar rectangular Sn2S2 four-membered ring in its centre. The tin atoms show a distorted trans-cis-cis octahedral coordination by 2C, 2N and 2S. The tin-nitrogen distances are 2.810(3) and 3.158(5) A. Compound 1 can be regarded as a model substance for nucleophilic attack at penta-coordinate tin centres. Although the degree of intramolecular coordination of nitrogen to tin is temperature dependent, the four-membered Sn2Sn2 ring remain…
Diorganotin Compounds Containing α‐Aminoacidato Schiff Base Ligands Derived from Functionalized 2‐Hydroxy‐5‐(aryldiazenyl)benzaldehyde. Syntheses, Structures and Sensing of Hydrogen Sulfide
On the Reaction of (tBu2SnO)3 with Organochlorosilanes. Simple Formation of [(tBu2SnO)2(tBu2SiO)]
On the reaction of [Ph2(OH)Si]2O with t-Bu2SnCl2: Synthesis and characterization of the first well defined polystannasiloxane [(t-Bu2SnO)(Ph2SiO)2]n
Abstract The high yield synthesis of [(t-Bu2SnO)(Ph2SiO)2], 1 is reported. Compound 1 is a linear polymer in the solid state but a six-membered ring in solution.
Nucleophilic attack within Ge, Sn and Pb complexes containing Me2N(CH2)(3) - as a potential intramolecular donor ligand
Abstract Thirteen tin compounds LxPhySnClz and LPh2SnPhX (x=1–4, y=0–3, z=0–2, XPh, F, Cl, Br, I, OPh), six germanium compounds LxPhyGeClz and four lead compounds LPh2PbPhX (XPh, Cl, Br, I) containing the potential intramolecular donor LMe2N(CH2)3—have been synthesized by Grignard reactions, redistribution, halogenation, exchange of halide and phenylation. Evidence for 1,5-chelation in which the donor Me2N intramolecularly attacks the Lewis-acidic atoms Ge, Sn or Pb is provided by six crystal structure determinations: Me2N(CH2)3SnPh2Cl, 5; Me2N(CH2)3SnPh2Br, 5a; Me2N(CH2)3SnPh2I, 5b; Me2N(CH2)3SnPh2OPh, 5d; Me2N(CH2)3SnPh3·HCl·H2O. 1a; Me2N(CH2)3PbPh2I, 17b), and by solution 13C, 119Sn a…
Intramolecularly Coordinated Bis(crown ether)-Substituted Organotin Halides as Ditopic Salt Receptors
The synthesis of the bis(crown ether)-substituted organostannanes X2Sn(CH2-[16]-crown-5)2 (3, X = I; 4, X = Br; 5, X = Cl; 6, X = F) and X2Sn(CH2-[13]-crown-4)2 (10, X = I; 11, X = Br; 12, X = F) is reported. The compounds have been characterized by 1H, 13C, 19F, and 119Sn NMR spectroscopy, elemental analyses, and electrospray ionization mass spectrometry (ESI-MS). Single-crystal X-ray diffraction analyses reveal a distorted-octahedral cis,cis,trans configuration of the tin atoms in compounds 4–6 and 10–12 as a result of intramolecular O→Sn coordination. The ability of the host molecules to form mono- and ditopic complexes with various halide salts in different solvents, including water, ha…
Trapping Molecular SnBr 2 (OH) 2 by Tin Alkoxide Coordination: Syntheses and Molecular Structures of [MeN(CH 2 CMe 2 O) 2 SnBr 2 ] 2 ·SnBr 2 (OH) 2 and RN(CH 2 CMe 2 O) 2 SnL [R = Me, n ‐Octyl; L = Lone Pair, Cr(CO) 5 , W(CO) 5 , Fe(CO) 4 , Br 2 ]
The synthesis of the intramolecularly coordinated stannylenes and their transition-metal complexes of the type RN(CH2CMe2O)2SnL [1: L = lone pair, R = Me; 2: L = lone pair, R = n-octyl; 5: L =W(CO)5, R = Me; 6: L = Cr(CO)5, R = Me; 7: L =W(CO)5, R = n-octyl; 8: L = Fe(CO)4, R = Me], and of the tin(IV) compounds RN(CH2CMe2O)2SnBr2 (9: R = Me), [MeN(CH2CMe2O)2SnBr2]2·SnBr2(OH)2 (10) and spiro-[RN(CH2CMe2O)2]2Sn (3: R = Me; 4: R = n-octyl) is reported. The compounds were characterized by elemental analyses, 1H, 13C, 119Sn, and 119Sn magic-angle spinning (5, 6) NMR spectroscopy, electrospray mass spectrometry, and single-crystal X-ray diffraction analysis.
Cis versus Trans: The Coordination Environment about the Tin(IV) Atom in Spirocyclic Amino Alcohol Derivatives.
The syntheses of amino alcohols MeN(CH2 CH2 CMe2 OH)2 (1), MeN(CMe2 CH2 OH)(CH2 CMe2 OH) (2), MeN(CH2 CH2 CH2 OH)(CH2 CMe2 OH) (3), MeN(CH2 CH2 CMe2 OH)(CH2 CMe2 OH) (4), MeN(CH2 CH2 CMe2 OH)(CH2 CH2 OH) (5), and MeN(CH2 CH2 OH) (CH2 CH2 CH2 OH) (6) as well as spirocyclic tin(IV) alkoxides spiro-[nBuN(CH2 CMe2 O)2 ]2 Sn (7), spiro-[MeN(CH2 CH2 CMe2 O)2 ]2 Sn (8), spiro-[para-FC6 H4 N (CH2 CMe2 O)2 ]2 Sn (9), spiro-[MeN(CMe2 CH2 O)(CH2 CMe2 O)]2 Sn (10), spiro-[MeN(CH2 CH2 CH2 O)(CH2 CMe2 O)]2 Sn (11), spiro-[MeN(CH2 CH2 CMe2 O)(CH2 CMe2 O)]2 Sn (12), spiro-[MeN(CH2 CH2 CMe2 O)(CH2 CH2 O)]2 Sn (13) and spiro-[MeN(CH2 CH2 O)(CH2 CH2 CH2 O)]2 Sn (14) are reported. The compounds were characteri…
18F-labeling of peptides by means of an organosilicon-based fluoride acceptor.
Fluorine-18 is among the most commonly used radionuclides for positron emission tomography (PET). This non-invasive imaging technique is capable of providing in vivo information about the distribution of radiolabeled biomolecules by 1808 coincidence detection of two simultaneously emitted photons from positron–electron annihilation. Although a number of different radiotracers have been successfully employed in PET, only a few, such as 2-[F]fluoro-2-deoxy-d-glucose (FDG) and [F]fluorodopa, have gained widespread application in nuclear medicine. The reason for this is that the regioselective introduction of F into tracer molecules is often non-specific and radiochemical yields (RCY) of the Fl…
Synthesis and structural studies of 2-stannyl-substituted ferrocenylmethylamine and -phosphine derivatives 2-Me2RSnFcCH2Y (RMe, Cl; YNMe2, PPh2, P(O)Ph2; FcC10H8Fe)
Abstract 2-(Trimethylstannyl)ferrocenylmethyldiphenylphosphine, 2-Me3SnFcCH2PPh2 (2a), was synthesized from 2-Me3SnFcCH2NMe2 (1a) and Ph2PH. Compound 2a is oxidized with H2O2 to 2-Me3SnFcCH2P(O)Ph2 (3a). Halogenation of 1a and 2a with Me2SnCl2 and 3a with HCl-diethyl ether yields the organotin monochlorides 2-Me3(Cl)SnFcCH2Y ( 1b , Y = NMe 2 ; 2b , Y = PPh 2 3b , Y = P ( O ) Ph 2 ) . Both crystal structure determinations and multinuclear magnetic resonance studies in solution reveal for 1b–3b molecular structures in which the tin atom approaches a trigonal bipyramidal pentacoordination as a consequence of an intramolecular Y Sn interaction. The donor strength of Y increases in the order PPh2
18F-Markierung von Peptiden mithilfe eines Organosilicium-Fluoridacceptors
Novel Stannatrane N(CH2CMe2O)2(CMe2CH2O)SnO-t-Bu and Related Oligonuclear Tin(IV) Oxoclusters. Two Isomers in One Crystal
The syntheses of the alkanolamine N(CH2CMe2OH)2(CMe2CH2OH) (1), of the stannatrane N(CH2CMe2O)2(CMe2CH2O)SnO-t-Bu (2), and of the trinuclear tin oxocluster 3 consisting of the two isomers [(μ3-O)(O-t-Bu){Sn(OCH2CMe2)(OCMe2CH2)2N}3] (3a) and [(μ3-O)(μ3-O-t-Bu){Sn(OCH2CMe2)(OCMe2CH2)2N}3] (3b) as well as the isolation of a few crystals of the hexanuclear tin oxocluster [LSnOSn(OH)3LSnOH]2 [L = N(CH2CMe2O)2(CMe2CH2O)] (4) are reported. The compounds were characterized by 1H, 13C, 15N, and 119Sn (1–3) nuclear magnetic resonance and infrared spectroscopy, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction analysis (1–4). A graph set analysis was performed for compoun…
CCDC 1409484: Experimental Crystal Structure Determination
Related Article: Michael Wagner, Bernhard Zobel, Christina Dietz, Dieter Schollmeyer, and Klaus Jurkschat|2015|Organometallics|34|5602|doi:10.1021/acs.organomet.5b00829
CCDC 1409486: Experimental Crystal Structure Determination
Related Article: Michael Wagner, Bernhard Zobel, Christina Dietz, Dieter Schollmeyer, and Klaus Jurkschat|2015|Organometallics|34|5602|doi:10.1021/acs.organomet.5b00829
CCDC 2066256: Experimental Crystal Structure Determination
Related Article: Tushar S. Basu Baul, Anurag Chaurasiya, Banteilang Lyngdoh Nonglait, Antonin Lyčka, Dieter Schollmeyer, Klaus Jurkschat|2021|J.Organomet.Chem.|946-947|121898|doi:10.1016/j.jorganchem.2021.121898
CCDC 2066261: Experimental Crystal Structure Determination
Related Article: Tushar S. Basu Baul, Anurag Chaurasiya, Banteilang Lyngdoh Nonglait, Antonin Lyčka, Dieter Schollmeyer, Klaus Jurkschat|2021|J.Organomet.Chem.|946-947|121898|doi:10.1016/j.jorganchem.2021.121898
CCDC 1483889: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Michael Lutter, Dieter Schollmeyer, Wolf Hiller, and Klaus Jurkschat|2016|Inorg.Chem.|55|10218|doi:10.1021/acs.inorgchem.6b01429
CCDC 1858288: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Roman Pallach, Michael Lutter, Fabian Roesler, Hazem Alnasr, Dieter Schollmeyer, Cederic Thomas, Klaus Jurkschat|2018|Chem.-Eur.J.|24|19266|doi:10.1002/chem.201803952
CCDC 1936179: Experimental Crystal Structure Determination
Related Article: Tushar Shubhra Basu Baul, Anurag Chaurasiya, Monosh Rabha, Snehadrinarayan Khatua, Antonin Lyčka, Dieter Schollmeyer, Klaus Jurkschat|2020|Eur.J.Inorg.Chem.|2020|1803|doi:10.1002/ejic.202000177
CCDC 1858294: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Roman Pallach, Michael Lutter, Fabian Roesler, Hazem Alnasr, Dieter Schollmeyer, Cederic Thomas, Klaus Jurkschat|2018|Chem.-Eur.J.|24|19266|doi:10.1002/chem.201803952
CCDC 1936182: Experimental Crystal Structure Determination
Related Article: Tushar Shubhra Basu Baul, Anurag Chaurasiya, Monosh Rabha, Snehadrinarayan Khatua, Antonin Lyčka, Dieter Schollmeyer, Klaus Jurkschat|2020|Eur.J.Inorg.Chem.|2020|1803|doi:10.1002/ejic.202000177
CCDC 902177: Experimental Crystal Structure Determination
Related Article: Verena Arens, Christina Dietz, Dieter Schollmeyer, and Klaus Jurkschat|2013|Organometallics|32|2775|doi:10.1021/om400216z
CCDC 902179: Experimental Crystal Structure Determination
Related Article: Verena Arens, Christina Dietz, Dieter Schollmeyer, and Klaus Jurkschat|2013|Organometallics|32|2775|doi:10.1021/om400216z
CCDC 902174: Experimental Crystal Structure Determination
Related Article: Verena Arens, Christina Dietz, Dieter Schollmeyer, and Klaus Jurkschat|2013|Organometallics|32|2775|doi:10.1021/om400216z
CCDC 1936180: Experimental Crystal Structure Determination
Related Article: Tushar Shubhra Basu Baul, Anurag Chaurasiya, Monosh Rabha, Snehadrinarayan Khatua, Antonin Lyčka, Dieter Schollmeyer, Klaus Jurkschat|2020|Eur.J.Inorg.Chem.|2020|1803|doi:10.1002/ejic.202000177
CCDC 902178: Experimental Crystal Structure Determination
Related Article: Verena Arens, Christina Dietz, Dieter Schollmeyer, and Klaus Jurkschat|2013|Organometallics|32|2775|doi:10.1021/om400216z
CCDC 902175: Experimental Crystal Structure Determination
Related Article: Verena Arens, Christina Dietz, Dieter Schollmeyer, and Klaus Jurkschat|2013|Organometallics|32|2775|doi:10.1021/om400216z
CCDC 1483890: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Michael Lutter, Dieter Schollmeyer, Wolf Hiller, and Klaus Jurkschat|2016|Inorg.Chem.|55|10218|doi:10.1021/acs.inorgchem.6b01429
CCDC 1858297: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Roman Pallach, Michael Lutter, Fabian Roesler, Hazem Alnasr, Dieter Schollmeyer, Cederic Thomas, Klaus Jurkschat|2018|Chem.-Eur.J.|24|19266|doi:10.1002/chem.201803952
CCDC 1483888: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Michael Lutter, Dieter Schollmeyer, Wolf Hiller, and Klaus Jurkschat|2016|Inorg.Chem.|55|10218|doi:10.1021/acs.inorgchem.6b01429
CCDC 2066260: Experimental Crystal Structure Determination
Related Article: Tushar S. Basu Baul, Anurag Chaurasiya, Banteilang Lyngdoh Nonglait, Antonin Lyčka, Dieter Schollmeyer, Klaus Jurkschat|2021|J.Organomet.Chem.|946-947|121898|doi:10.1016/j.jorganchem.2021.121898
CCDC 1496144: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Michael Lutter, Dieter Schollmeyer, Wolf Hiller, and Klaus Jurkschat|2016|Inorg.Chem.|55|10218|doi:10.1021/acs.inorgchem.6b01429
CCDC 2066257: Experimental Crystal Structure Determination
Related Article: Tushar S. Basu Baul, Anurag Chaurasiya, Banteilang Lyngdoh Nonglait, Antonin Lyčka, Dieter Schollmeyer, Klaus Jurkschat|2021|J.Organomet.Chem.|946-947|121898|doi:10.1016/j.jorganchem.2021.121898
CCDC 1858291: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Roman Pallach, Michael Lutter, Fabian Roesler, Hazem Alnasr, Dieter Schollmeyer, Cederic Thomas, Klaus Jurkschat|2018|Chem.-Eur.J.|24|19266|doi:10.1002/chem.201803952
CCDC 1858296: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Roman Pallach, Michael Lutter, Fabian Roesler, Hazem Alnasr, Dieter Schollmeyer, Cederic Thomas, Klaus Jurkschat|2018|Chem.-Eur.J.|24|19266|doi:10.1002/chem.201803952
CCDC 1936181: Experimental Crystal Structure Determination
Related Article: Tushar Shubhra Basu Baul, Anurag Chaurasiya, Monosh Rabha, Snehadrinarayan Khatua, Antonin Lyčka, Dieter Schollmeyer, Klaus Jurkschat|2020|Eur.J.Inorg.Chem.|2020|1803|doi:10.1002/ejic.202000177
CCDC 902176: Experimental Crystal Structure Determination
Related Article: Verena Arens, Christina Dietz, Dieter Schollmeyer, and Klaus Jurkschat|2013|Organometallics|32|2775|doi:10.1021/om400216z
CCDC 2066259: Experimental Crystal Structure Determination
Related Article: Tushar S. Basu Baul, Anurag Chaurasiya, Banteilang Lyngdoh Nonglait, Antonin Lyčka, Dieter Schollmeyer, Klaus Jurkschat|2021|J.Organomet.Chem.|946-947|121898|doi:10.1016/j.jorganchem.2021.121898
CCDC 1858292: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Roman Pallach, Michael Lutter, Fabian Roesler, Hazem Alnasr, Dieter Schollmeyer, Cederic Thomas, Klaus Jurkschat|2018|Chem.-Eur.J.|24|19266|doi:10.1002/chem.201803952
CCDC 1409487: Experimental Crystal Structure Determination
Related Article: Michael Wagner, Bernhard Zobel, Christina Dietz, Dieter Schollmeyer, and Klaus Jurkschat|2015|Organometallics|34|5602|doi:10.1021/acs.organomet.5b00829
CCDC 1858290: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Roman Pallach, Michael Lutter, Fabian Roesler, Hazem Alnasr, Dieter Schollmeyer, Cederic Thomas, Klaus Jurkschat|2018|Chem.-Eur.J.|24|19266|doi:10.1002/chem.201803952
CCDC 2066258: Experimental Crystal Structure Determination
Related Article: Tushar S. Basu Baul, Anurag Chaurasiya, Banteilang Lyngdoh Nonglait, Antonin Lyčka, Dieter Schollmeyer, Klaus Jurkschat|2021|J.Organomet.Chem.|946-947|121898|doi:10.1016/j.jorganchem.2021.121898
CCDC 1858293: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Roman Pallach, Michael Lutter, Fabian Roesler, Hazem Alnasr, Dieter Schollmeyer, Cederic Thomas, Klaus Jurkschat|2018|Chem.-Eur.J.|24|19266|doi:10.1002/chem.201803952
CCDC 1858295: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Roman Pallach, Michael Lutter, Fabian Roesler, Hazem Alnasr, Dieter Schollmeyer, Cederic Thomas, Klaus Jurkschat|2018|Chem.-Eur.J.|24|19266|doi:10.1002/chem.201803952
CCDC 1409488: Experimental Crystal Structure Determination
Related Article: Michael Wagner, Bernhard Zobel, Christina Dietz, Dieter Schollmeyer, and Klaus Jurkschat|2015|Organometallics|34|5602|doi:10.1021/acs.organomet.5b00829
CCDC 1409485: Experimental Crystal Structure Determination
Related Article: Michael Wagner, Bernhard Zobel, Christina Dietz, Dieter Schollmeyer, and Klaus Jurkschat|2015|Organometallics|34|5602|doi:10.1021/acs.organomet.5b00829
CCDC 1858289: Experimental Crystal Structure Determination
Related Article: Britta Glowacki, Roman Pallach, Michael Lutter, Fabian Roesler, Hazem Alnasr, Dieter Schollmeyer, Cederic Thomas, Klaus Jurkschat|2018|Chem.-Eur.J.|24|19266|doi:10.1002/chem.201803952