0000000001300053
AUTHOR
Anatoly Mishnev
Combined Use of Structure Analysis, Studies of Molecular Association in Solution, and Molecular Modelling to Understand the Different Propensities of Dihydroxybenzoic Acids to Form Solid Phases
The arrangement of hydroxyl groups in the benzene ring has a significant effect on the propensity of dihydroxybenzoic acids (diOHBAs) to form different solid phases when crystallized from solution. All six diOHBAs were categorized into distinctive groups according to the solid phases obtained when crystallized from selected solvents. A combined study using crystal structure and molecule electrostatic potential surface analysis, as well as an exploration of molecular association in solution using spectroscopic methods and molecular dynamics simulations were used to determine the possible mechanism of how the location of the phenolic hydroxyl groups affect the diversity of solid phases formed…
Superparamagnetic iron oxide/oleic acid nanoparticles with immobilized organosilicon derivatives ofN-(2-hydroxyethyl)tetrahydroisoquinoline: synthesis, morphology and interaction with normal and tumour cells
Superparamagnetic iron oxide/oleic acid nanoparticles bearing lipid-like organosilicon N-(2-hydroxyethyl)-1,2,3,4-tetrahydroisoquinoline derivatives have been synthesized with the aim of their potential biomedical application. X-ray diffraction analysis, Dynamic light-scattering measurements, method of magnetogranulometry and some others have been employed to investigate the morphology and properties of the nanoparticles synthesized. The magnetic core diameter of mixed covered nanoparticles ranged between 4.8 and 9.6 nm. The magnetization analyses showed that the particles are superparamagnetic at room temperature. In vitro cell cytotoxicity and intracellular NO generation caused by the wat…
Growth temperature influence on the GaN nanowires grown by MOVPE technique
GaN nanowires (NWs) were successfully grown by Vapor-Liquid-Solid (VLS) growth mechanism on GaN template using metal-organic vapor phase epitaxy (MOVPE) with diameters ranging from 20 to 200 nm and length up to few microns. The characterization by scanning electron microscopy (SEM) reveals an optimum growth temperature at 790°C and X-ray diffraction (XRD) investigations indicates oriented crystallinity of grown NWs.
All-organic fast intersystem crossing assisted exciplexes exhibiting sub-microsecond thermally activated delayed fluorescence
A novel strategy is presented towards acquisition of exciplex systems exhibiting thermally activated delayed fluorescence (TADF) with a high reverse intersystem crossing (RISC) rate (exceeding 107 s−1). This approach involves constructing exciplex donor–acceptor molecular pairs, where the acceptor molecule possesses the ability to undergo fast and efficient intersystem crossing (ISC). With the use of 6-cyano-9-phenylpurine (PCP) acceptor and carbazole-based donor molecules, exciplexes were obtained, where the excitation is contained on PCP and undergoes fast ISC to form a local excited triplet state (3LEA). The controlled excitation transfer to the 3LEA level provides an optimal reverse int…
Hexamorphism of Dantrolene: Insight into the Crystal Structures, Stability, and Phase Transformations
Dantrolene represents yet another interesting example of abundant molecular crystal polymorphism existing in at least six different neat polymorphs, three of which can be obtained via crystallizati...
Preparation and cytotoxic properties of goethite-based nanoparticles covered with decyldimethyl(dimethylaminoethoxy) silane methiodide
The present work describes the synthesis, physico-chemical and biological properties of the first water-soluble goethite nanoparticles covered with biologically active components: oleic acid and cytotoxic decyldimethyl(dimethylaminoethoxy)silane methiodide. The structure of initial goethite nanoparticles synthesized was proved by XRD analysis and the rough estimation of nanoparticles core size gave the value of 8 nm. The size of colloidal water-soluble nanoparticles, determined by dynamic light scattering, was within 19–35 nm. Magnetic properties and cytotoxicity (against HT-1080 and MG-22A tumor cell lines) of the nanoparticles obtained were investigated. Copyright © 2009 John Wiley & Sons…
Iron oxide superparamagnetic nanocarriers bearing amphiphilic N-heterocyclic choline analogues as potential antimicrobial agents
Magnetic nanoparticles represent an advanced tool in biomedicine because they can be simultaneously functionalized and guided using a magnetic field. Iron oxide magnetic nanoparticles precoated with oleic acid and bearing novel antimicrobial N-heterocyclic choline analogues, namely O-, N- and O,N-bis-undecyl-substituted N-(2-hydroxyethyl)-1,2,3,4-tetrahydroisoquinolinium derivatives, have been obtained as potential biomedical agents for drug delivery and antimicrobial therapy. Structural and size determinations for the novel synthesized magnetic nanosystems were carried out based upon magnetogranulometry, dynamic light-scattering measurements and X-ray diffraction analysis. The most expecte…
Pimobendan B from powder diffraction data
The title molecule, C19H18N4O2{systematic name: (RS)-6-[2-(4-methoxyphenyl)-1H-benzimidazol-5-yl]-5-methyl-4,5-dihydropyridazin-3(2H)-one}, adopts an extended conformation. The dihedral angles between the central benzimidazole ring sytem and the pendant methoxyphenyl and pyridazinone residues are 1.41 (18) and 9.7 (3)°, respectively. In the crystal, N—H...N hydrogen bonds link the imadazole groups into [001] chains, and pairs of N—H...O hydrogen bonds link the pyridazinone groups into dimers. Together, these generate a two-dimensional supramolecular structure parallel to (010). The layers are linked by C—H...π interactions.
7-[(3-Chloro-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepin-11-yl)amino]heptanoic acidS,S-dioxide hydrochloride
In the title compound, C(21)H(26)ClN(2)O(4)S(.)Cl, also known as tianeptine hydro-chloride, the seven-membered ring adopts a boat conformation. The dihedral angle between the mean planes of the benzene rings is 44.44 (7)°. There is an intra-molecular hydrogen bond formed via S= O⋯H-N. In the crystal, mol-ecules are connected via pairs of N-H.·O, N-H⋯Cl and O-H⋯Cl hydrogen bonds, forming inversion dimers, which are consolidated by C-H⋯O inter-actions. The dimers are linked by C-H⋯O and C-H⋯Cl inter-actions, forming a two-dimensional network lying parallel to (011).
Electrosynthesis of Stable Betulin‐Derived Nitrile Oxides and their Application in Synthesis of Cytostatic Lupane‐Type Triterpenoid‐Isoxazole Conjugates
Crystallographic Study of Solvates and Solvate Hydrates of an Antibacterial Furazidin
In this study we present a detailed crystallographic analysis of multiple solvates of an antibacterial furazidin. Solvate formation of furazidin was investigated by crystallizing it from pure solvents and solvent-water mixtures. Crystal structure analysis of the obtained solvates and computational calculations were used to rationalize the main factors leading to the intermolecular interactions present in the solvate crystal structures as well as resulting in formation of the observed solvates and solvate hydrates. Furazidin forms pure solvates and solvate hydrates with solvents having large hydrogen bond acceptor propensity as well as with a hydrogen bond donor and acceptor formic acid. In …
Polymorphism of R-Encenicline Hydrochloride: Access to the Highest Number of Structurally Characterized Polymorphs Using Desolvation of Various Solvates
In a study of the solid form landscape of R-encenicline hydrochloride (Enc-HCl), it was found that this compound is dodecamorphic and presents the first published example of polymorphism with a rec...
Synthesis and characterization of nanoparticles with an iron oxide magnetic core and a biologically active trialkylsilylated aliphatic alkanolamine shell
Water-soluble double-coated magnetic nanoparticles (NPs) containing cytotoxic decyldimethyl(β-dimethylaminoethoxy)silane methiodide (AA) molecule sorbed at biocompatible magnetic particles, which consist of magnetite pre-coated with oleic acid (OA), have been prepared. X-ray line profile broadening analysis was used for crystallite size determination. The method of magnetogranulometry has been used for determination of diameter of iron oxide magnetic core and magnetic properties of NPs prepared. In vitro cytotoxicity on monolayer tumor cell lines HT-1080 (human fibrosarcoma), MG-22A (mouse hepatoma) and normal mouse fibroblasts (NIH 3T3) has been studied. It was revealed that all the water-…
CCDC 2036320: Experimental Crystal Structure Determination
Related Article: Artis Kons, Anatoly Mishnev, Timur A. Mukhametzyanov, Alexey V. Buzyurov, Semen E. Lapuk, Agris Be̅rziņš|2021|Cryst.Growth Des.|21|1190|doi:10.1021/acs.cgd.0c01508
CCDC 2122147: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 2036319: Experimental Crystal Structure Determination
Related Article: Artis Kons, Anatoly Mishnev, Timur A. Mukhametzyanov, Alexey V. Buzyurov, Semen E. Lapuk, Agris Be̅rziņš|2021|Cryst.Growth Des.|21|1190|doi:10.1021/acs.cgd.0c01508
CCDC 1895188: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 2036323: Experimental Crystal Structure Determination
Related Article: Artis Kons, Anatoly Mishnev, Timur A. Mukhametzyanov, Alexey V. Buzyurov, Semen E. Lapuk, Agris Be̅rziņš|2021|Cryst.Growth Des.|21|1190|doi:10.1021/acs.cgd.0c01508
CCDC 2036318: Experimental Crystal Structure Determination
Related Article: Artis Kons, Anatoly Mishnev, Timur A. Mukhametzyanov, Alexey V. Buzyurov, Semen E. Lapuk, Agris Be̅rziņš|2021|Cryst.Growth Des.|21|1190|doi:10.1021/acs.cgd.0c01508
CCDC 2121374: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 2077764: Experimental Crystal Structure Determination
Related Article: Aija Trimdale, Anatoly Mishnev, Agris Bērziņš|2021|Pharmaceutics|13|734|doi:10.3390/pharmaceutics13050734
CCDC 1895194: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 1916269: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2020|CSD Communication|||
CCDC 2222725: Experimental Crystal Structure Determination
Related Article: Lia̅na Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Be̅rziņš|2022|Cryst.Growth Des.|23|873|doi:10.1021/acs.cgd.2c01114
CCDC 1895196: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 1916266: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 1916267: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 1895193: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 2222724: Experimental Crystal Structure Determination
Related Article: Lia̅na Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Be̅rziņš|2022|Cryst.Growth Des.|23|873|doi:10.1021/acs.cgd.2c01114
CCDC 2122145: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 2036325: Experimental Crystal Structure Determination
Related Article: Artis Kons, Anatoly Mishnev, Timur A. Mukhametzyanov, Alexey V. Buzyurov, Semen E. Lapuk, Agris Be̅rziņš|2021|Cryst.Growth Des.|21|1190|doi:10.1021/acs.cgd.0c01508
CCDC 1895198: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 1895189: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 2036322: Experimental Crystal Structure Determination
Related Article: Artis Kons, Anatoly Mishnev, Timur A. Mukhametzyanov, Alexey V. Buzyurov, Semen E. Lapuk, Agris Be̅rziņš|2021|Cryst.Growth Des.|21|1190|doi:10.1021/acs.cgd.0c01508
CCDC 2036321: Experimental Crystal Structure Determination
Related Article: Artis Kons, Anatoly Mishnev, Timur A. Mukhametzyanov, Alexey V. Buzyurov, Semen E. Lapuk, Agris Be̅rziņš|2021|Cryst.Growth Des.|21|1190|doi:10.1021/acs.cgd.0c01508
CCDC 2122135: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 1895195: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 1895199: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 2077765: Experimental Crystal Structure Determination
Related Article: Aija Trimdale, Anatoly Mishnev, Agris Bērziņš|2021|Pharmaceutics|13|734|doi:10.3390/pharmaceutics13050734
CCDC 2122164: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 2036324: Experimental Crystal Structure Determination
Related Article: Artis Kons, Anatoly Mishnev, Timur A. Mukhametzyanov, Alexey V. Buzyurov, Semen E. Lapuk, Agris Be̅rziņš|2021|Cryst.Growth Des.|21|1190|doi:10.1021/acs.cgd.0c01508
CCDC 928882: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 1895190: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 1895192: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 922708: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 2122176: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 2036317: Experimental Crystal Structure Determination
Related Article: Artis Kons, Anatoly Mishnev, Timur A. Mukhametzyanov, Alexey V. Buzyurov, Semen E. Lapuk, Agris Be̅rziņš|2021|Cryst.Growth Des.|21|1190|doi:10.1021/acs.cgd.0c01508
CCDC 1916268: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 922164: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 1988182: Experimental Crystal Structure Determination
Related Article: Kaspars Traskovskis, Armands Sebris, Irina Novosjolova, Māris Turks, Matas Guzauskas, Dmytro Volyniuk, Oleksandr Bezvikonnyi, Juozas V. Grazulevicius, Anatoly Mishnev, Raitis Grzibovskis, Aivars Vembris|2021|J.Mater.Chem.C|9|4532|doi:10.1039/D0TC05099G
CCDC 2077766: Experimental Crystal Structure Determination
Related Article: Aija Trimdale, Anatoly Mishnev, Agris Bērziņš|2021|Pharmaceutics|13|734|doi:10.3390/pharmaceutics13050734
CCDC 2222740: Experimental Crystal Structure Determination
Related Article: Lia̅na Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Be̅rziņš|2022|Cryst.Growth Des.|23|873|doi:10.1021/acs.cgd.2c01114
CCDC 1895191: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 1895197: Experimental Crystal Structure Determination
Related Article: Artis Kons, Agris Bērziņš, Andris Actiņš, Toms Rekis, Sander Van Smaalen, Anatoly Mishnev|2019|Cryst.Growth Des.|19|4765|doi:10.1021/acs.cgd.9b00648
CCDC 2053832: Experimental Crystal Structure Determination
Related Article: Jevgeņija Lugiņina, Martin Linden, Māris Bazulis, Viktors Kumpiņš, Anatoly Mishnev, Sergey A. Popov, Tatiana S. Golubeva, Siegfried R. Waldvogel, Elvira E. Shults, Māris Turks|2021|Eur.J.Org.Chem.|2021|2557|doi:10.1002/ejoc.202100293
CCDC 2053830: Experimental Crystal Structure Determination
Related Article: Jevgeņija Lugiņina, Martin Linden, Māris Bazulis, Viktors Kumpiņš, Anatoly Mishnev, Sergey A. Popov, Tatiana S. Golubeva, Siegfried R. Waldvogel, Elvira E. Shults, Māris Turks|2021|Eur.J.Org.Chem.|2021|2557|doi:10.1002/ejoc.202100293
CCDC 2121392: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk