0000000001314715
AUTHOR
Vicente Tordera
Comprehensive analysis of interacting proteins and genome-wide location studies of the Sas3-dependent NuA3 histone acetyltransferase complex
Highlights • We characterise Sas3p and Gcn5p active HAT complexes in WT and deleted TAP-strains. • We confirm that Pdp3p interacts with NuA3, histones and chromatin regulators. • Pdp3p MS-analysis reveals its phosphorylation, ubiquitination and methylation. • Sas3p can substitute Gcn5p in acetylation of histone H3K14 but not of H3K9. • Genome-wide profiling of Sas3p supports its involvement in transcriptional elongation.
Histone H3 Lysine 4 Mono-methylation does not Require Ubiquitination of Histone H2B
The yeast Set1-complex catalyzes histone H3 lysine 4 (H3K4) methylation. Using N-terminal Edman sequencing, we determined that 50% of H3K4 is methylated and consists of roughly equal amounts of mono, di and tri-methylated H3K4. We further show that loss of either Paf1 of the Paf1 elongation complex, or ubiquitination of histone H2B, has only a modest effect on bulk histone mono-methylation at H3K4. Despite the fact that Set1 recruitment decreases in paf1delta cells, loss of Paf1 results in an increase of H3K4 mono-methylation at the 5' coding region of active genes, suggesting a Paf1-independent targeting of Set1. In contrast to Paf1 inactivation, deleting RTF1 affects H3K4 mono-methylation…
Making your own gene library
HAT1 and HAT2 Proteins Are Components of a Yeast Nuclear Histone Acetyltransferase Enzyme Specific for Free Histone H4
We have analyzed the histone acetyltransferase enzymes obtained from a series of yeast hat1, hat2, and gcn5 single mutants and hat1,hat2 and hat1,gcn5 double mutants. Extracts prepared from both hat1 and hat2 mutant strains specifically lack the following two histone acetyltransferase activities: the well known cytoplasmic type B enzyme and a free histone H4-specific histone acetyltransferase located in the nucleus. The catalytic subunits of both cytoplasmic and nuclear enzymes have identical molecular masses (42 kDa), the same as that of HAT1. However, the cytoplasmic complex has a molecular mass (150 kDa) greater than that of the nuclear complex (110 kDa). The possible functions of HAT1 a…
On the ubiquitous presence of histone acetyltransferase B in eukaryotes
AbstractHistone acetyltransferase B activity has been found in pea (Pisun sativum) seedlings. The enzyme has been partially purified and it has been found that it is highly specific for H4. The results confirm that histone acetyltransferase B occurs in 3 eukaryotic kingdoms.
The role of histones and their modifications in the informative content of chromatin
It is traditionally accepted that the DNA sequence cannot by itself explain all the mechanisms necessary for the development of living beings, especially in eukaryotes. Indeed part of the information used in these processes is stored in other ways, generally called ‘epigenetic’, whose molecular mechanisms are mostly unknown. The ultimate explanation for them might reside in the non-DNA moiety of chromatin which may play an active role in heredity (‘chromatin information’). Histones are the universal structural component of chromatin. However, recent studies strongly suggest that histones, and their modifications — especially the reversible acetylation of lysines — may act as a recognition s…
Dynamic remodeling of histone modifications in response to osmotic stress in Saccharomyces cerevisiae.
Abstract Background Specific histone modifications play important roles in chromatin functions; i.e., activation or repression of gene transcription. This participation must occur as a dynamic process. Nevertheless, most of the histone modification maps reported to date provide only static pictures that link certain modifications with active or silenced states. This study, however, focuses on the global histone modification variation that occurs in response to the transcriptional reprogramming produced by a physiological perturbation in yeast. Results We did a genome-wide chromatin immunoprecipitation analysis for eight specific histone modifications before and after saline stress. The most…
Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures
To understand how cells regulate each step in the flow of gene expression is one of the most fundamental goals in molecular biology. In this work, we have investigated several protein turnover-related steps in the context of gene expression regulation in response to changes in external temperature in model yeast Saccharomyces cerevisiae. We have found that the regulation of protein homeostasis is stricter than mRNA homeostasis. Although global translation and protein degradation rates are found to increase with temperature, the increase of the catalytic activity of ribosomes is higher than the global translation rate suggesting that yeast cells adapt the amount of translational machinery to…
Yeast HAT1 and HAT2 deletions have different life-span and transcriptome phenotypes
AbstractHAT-B is a yeast histone acetyltransferase composed of Hat1, Hat2 and Hif1 proteins. We demonstrate that a hat2 mutant or a hat1hat2 double mutant, but not a hat1 mutant, have an extended life-span. Transcriptome analysis shows that the single hat mutants are not very different from wild type. However, the comparison of the hat1 and hat2 transcriptomes shows that they are different. The hat1hat2 double mutant shows a transcriptional phenotype similar to that of the hat1 mutant but strongly enhanced. These results indicate that Hat2p could have additional functions in the cell to those of Hat1p.
Bromodomain factor 1 (Bdf1) protein interacts with histones
AbstractUsing a yeast two-hybrid assay we detected an interaction between the N-terminal region of histone H4 (amino acids 1–59) and a fragment of the bromodomain factor 1 protein (Bdf1p) (amino acids 304–571) that includes one of the two bromodomains of this protein. No interaction was observed using fragments of histone H4 sequence smaller than the first 59 amino acids. Recombinant Bdf1p (rBdf1p) demonstrates binding affinity for histones H4 and H3 but not H2A and H2B in vitro. Moreover, rBdf1p is able to bind histones H3 and H4 having different degrees of acetylation. Finally, we have not detected histone acetyltransferase activity associated with Bdf1p.
Homeostasis in the Central Dogma of molecular biology: the importance of mRNA instability
Cell survival requires the control of biomolecule concentration, i.e. biomolecules should approach homeostasis. With information-carrying macromolecules, the particular concentration variation ranges depend on each type: DNA is not buffered, but mRNA and protein concentrations are homeostatically controlled, which leads to the ribostasis and proteostasis concepts. In recent years, we have studied the particular features of mRNA ribostasis and proteostasis in the model organism S. cerevisiae. Here we extend this study by comparing published data from three other model organisms: E. coli, S. pombe and cultured human cells. We describe how mRNA ribostasis is less strict than proteostasis. A co…
Structural Characterization of Set1 RNA Recognition Motifs and their Role in Histone H3 Lysine 4 Methylation
Departament de Bioquimica iBiologia Molecular, Universitatde Valencia, C/Dr Moliner 50,46100, Burjassot, SpainThe yeast Set1 histone H3 lysine 4 (H3K4) methyltransferase contains, inaddition to its catalytic SET domain, a conserved RNA recognition motif(RRM1). We present here the crystal structure and the secondary structureassignment in solution of the Set1 RRM1. Although RRM1 has the expectedβαββαβ RRM-fold, it lacks the typical RNA-binding features of thesemodules. RRM1 is not able to bind RNA by itself in vitro, but a constructcombining RRM1 with a newly identified downstream RRM2 specificallybinds RNA. Invivo,H3K4 methylation isnot affectedbyapoint mutation inRRM2 that preserves Set1 s…
Properties of the yeast nuclear histone deacetylase.
A nuclear histone deacetylase from yeast was partially purified and some of its characteristics were studied. Histone deacetylase activity was stimulated in vitro by high-mobility-group nonhistone chromatin proteins 1 and 2 and ubiquitin and inhibited by spermine and spermidine, whereas n-butyrate had no significant inhibitory effect. Like the mammalian enzyme, partially purified histone deacetylase from yeast was strongly inhibited by trichostatin A. However, in crude extract preparations the yeast enzyme was not inhibited and treatment with trichostatin in vivo did not show any effect, either on the histone acetylation level or on cell viability. At low ionic strength, the enzyme can be i…
The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes.
A macroarray platform was used to identify binding sites of yeast histone acetyltransferase catalytic subunits and to correlate their positions with acetylation of lysine 14 of histone H3, revealing that Sas3p and Gcn5p are recruited to similar sets of intensely transcribed genes.
Rapid Plasmid Isolation. A Laboratory Experiment for Intermediate and Advanced Students
Subcellular localization and nucleosome specificity of yeast histone acetyltransferases
We have previously reported [López-Rodas et al. (1989) J. Biol. Chem. 264, 19028-19033] that the yeast Saccharomyces cerevisiae contains four histone acetyltransferases, which can be resolved by ion-exchange chromatography, and their specificity toward yeast free histones was studied. In the present contribution we show that three of the enzymes are nuclear, type A histone acetyltransferases and they are able to acetylate nucleosome-bound histones. They differ in their histone specificity. Enzyme A1 acetylates H2A in chicken nucleosomes, although it is specific for yeast free H2B; histone acetyltransferase A2 is highly specific for H3, and histone acetyltransferase A3 preparations acetylate…
Gcn5p is involved in the acetylation of histone H3 in nucleosomes.
Abstract Enzymatic extracts from a gcn5 mutant and wild-type strains of Saccharomyces cerevisiae were chromatographically fractionated and the histone acetyltransferase activities compared. When free histones were used as substrate, extracts from wild-type cells showed two peaks of activity on histone H3 but extracts from gcn5 mutant cells showed only one. With nucleosomes as substrate, the histone acetyltransferase activities present in extracts from the gcn5 mutant strain were not able to modify H3 whereas wild-type cell extracts acetylated intensely this histone. The activity that acetylated nucleosome-bound H3 behaved as a 170-kDa complex. We suggest that Gcn5p represents a catalytic su…
Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes
Epigenetic information is able to interact with the cellular environment and could be especially useful for reprograming gene expression in response to a physiological perturbation. In fact the genes induced or repressed by osmotic stress undergo significant changes in terms of the levels of various histone modifications, especially in the acetylation levels of histone H3. Exposing yeast to high osmolarity results in the activation of stress-activated protein kinase Hog1, which plays a central role in gene expression control. We evaluated the connection between the presence of Hog1 and changes in histone H3 acetylation in stress-regulated genes. We found a parallel increase in the acetylati…
dsDNA, ssDNA, G-quadruplex DNA, and nucleosomal DNA electrochemical screening using canthin-6-one alkaloid-modified electrodes
Abstract Microparticulate films of a canthin-6-one alkaloid ( L ), a natural β-carboline alkaloid presenting a characteristic naphtyridone motif, on glassy carbon electrodes yield different, separate voltammetric signals for dsDNA, ssDNA, G-quadruplex DNA, different degrees of DNA methylation and the biomimetic nucleosomal DNA with detection limit of 10 −5 M. This multiple-signal electrochemical behavior is in contrast with conventional use of DNA intercalators, only discriminating between different DNA forms by variations in the intensity of a unique signal. Complementary photochemical and scanning electrochemical microscopy (SECM) data suggest that the differences in the voltammetric res…
Yeast contains multiple forms of histone acetyltransferase.
We have assayed several methods to quantitatively recover yeast histone acetyltransferases in an attempt to study the multiplicity of enzymatic activities. Two methods, namely (NH4)2SO4 precipitation and salt dissociation of chromatin in 0.5 M NaCl, yielded convenient preparations of total histone acetyltransferases. DEAE-Sepharose chromatography of the crude extracts resulted in the separation of three peaks of activity when total yeast histones were used as substrate. However, the scanning of the enzymatic activity toward individual histones along the chromatography, achieved by determining the specific activity of the individual histones after incubating whole histones and [14C]acetyl-Co…
Interaction between N-terminal domain of H4 and DNA is regulated by the acetylation degree.
Abstract To study whether the acetylation of one or more of the four acetylatable lysines of histone H4 affects its binding to DNA, we have designed a protection experiment with a model system consisting in phage lambda DNA as substrate, Stu I as restriction endonuclease and histone H4 with different degrees of acetylation as the protective agent. It can be deduced from the experimental data that the protection afforded by the histone is not dependent on the number of positive charges lost by acetylation. Thus, non-acetylated H4 and mono-acetylated H4 cause similar protection, while di-acetylation of the histone seems to be the crucial step in significantly weakening the interaction between…
Analysis of Chromatin Structure and Composition
Introduction Biochemistry, like many other sciences, is currently undergoing increasing specialization which is thought to be unavoidable because of the rapid progress within this field. Obviously education in Biochemistry and Molecular Biology is also affected. Consequently, the student may lose the ability to integrate his knowledge, which should be a requirement during the training of a scientist. The solution to this problem is quite easy in the case of theoretical courses because, here, the lecturer may include several 'integrative lessons' which give a global view of previously explained facts and place them within the general context of the course. However, in practical courses it is…
Protein Interactions within the Set1 Complex and Their Roles in the Regulation of Histone 3 Lysine 4 Methylation
Set1 is the catalytic subunit and the central component of the evolutionarily conserved Set1 complex (Set1C) that methylates histone 3 lysine 4 (H3K4). Here we have determined protein/protein interactions within the complex and related the substructure to function. The loss of individual Set1C subunits differentially affects Set1 stability, complex integrity, global H3K4 methylation, and distribution of H3K4 methylation along active genes. The complex requires Set1, Swd1, and Swd3 for integrity, and Set1 amount is greatly reduced in the absence of the Swd1-Swd3 heterodimer. Bre2 and Sdc1 also form a heteromeric subunit, which requires the SET domain for interaction with the complex, and Sdc…
Isolation and Characterization of an Fe(III)-Chelating Compound Produced by Pseudomonas syringae
The phytopathogenic bacterium Pseudomonas syringae produces a fluorescent pigment when it is grown in iron-deficient media. This pigment forms a very stable Fe(III) complex that was purified in this form by using a novel procedure based on ultrafiltration and column chromatography. The Fe(III) complex has a molecular weight of 1,100 and contains 1 mol of Fe(III). The pigment is composed of an amino acid moiety with three threonines, three serines, one lysine, δ- N -hydroxyornithine, and a quinoline-type fluorescent chromophore. These features and its stability constant (in the range of 10 32 ) suggest that the fluorescent pigment of P. syringae is related to the siderophores produced by an…
Hif1 Is a Component of Yeast Histone Acetyltransferase B, a Complex Mainly Localized in the Nucleus
Hat1 is the catalytic subunit of the only type B histone acetyltransferase known (HAT-B). The enzyme specifically acetylates lysine 12, and to a lesser extent lysine 5, of free, non-chromatin-bound histone H4. The complex is usually isolated with cytosolic fractions and is thought to be involved in chromatin assembly. The Saccharomyces cerevisiae HAT-B complex also contains Hat2, a protein stimulating Hat1 catalytic activity. We have now identified by two-hybrid experiments Hif1 as both a Hat1- and a histone H4-interacting protein. These interactions were dependent on HAT2, indicating a mediating role for Hat2. Biochemical fractionation and co-immunoprecipitation assays demonstrated that Hi…
Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes
Epigenetic information is able to interact with the cellular environment and could be especially useful for reprograming gene expression in response to a physiological perturbation. In fact the genes induced or repressed by osmotic stress undergo significant changes in terms of the levels of various histone modifications, especially in the acetylation levels of histone H3. Exposing yeast to high osmolarity results in the activation of stress-activated protein kinase Hog1, which plays a central role in gene expression control. We evaluated the connection between the presence of Hog1 and changes in histone H3 acetylation in stress-regulated genes. We found a parallel increase in the acetylati…