0000000001317312
AUTHOR
Nils Richter
Spin relaxation in Cu and Al spin conduits
We study the spin relaxation in Al and Cu spin conduits embedded in non-local spin valve nanostructures. Measuring the key spin transport properties, we determine the spin and charge diffusion constants as well as the spin flip time. By varying the temperature, we find that the maximum of the non-local spin resistance change occurs at finite temperatures with a clear difference between Al and Cu. In particular, we find that the maximum of the non-local spin signal in Al is less pronounced and occurs at lower temperatures compared to Cu suggesting that the self-passivating Al surface plays a role. Having fabricated devices with both materials in identical processes, we can attribute the diff…
Reversible Photochemical Control of Doping Levels in Supported Graphene
Controlling the type and density of charge carriers in graphene is vital for a wide range of applications of this material in electronics and optoelectronics. To date, chemical doping and electrostatic gating have served as the two most established means to manipulate the carrier density in graphene. Although highly effective, these two approaches require sophisticated graphene growth or complex device fabrication processes to achieve both the desired nature and the doping densities with generally limited dynamic tunability and spatial control. Here, we report a convenient and tunable optical approach to tune the steady-state carrier density and Fermi energy in graphene by photochemically c…
Geometrical control of pure spin current induced domain wall depinning.
[EN] We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this …
Charge transport mechanism in networks of armchair graphene nanoribbons
In graphene nanoribbons (GNRs), the lateral confinement of charge carriers opens a band gap, the key feature to enable novel graphene-based electronics. Successful synthesis of GNRs has triggered efforts to realize field-effect transistors (FETs) based on single ribbons. Despite great progress, reliable and reproducible fabrication of single-ribbon FETs is still a challenge that impedes applications and the understanding of the charge transport. Here, we present reproducible fabrication of armchair GNR-FETs based on a network of nanoribbons and analyze the charge transport mechanism using nine-atom wide and, in particular, five-atom-wide GNRs with unprecedented conductivity. We show formati…
Epoch versus impulse models in the analysis of parametric fMRI studies
Abstract Objective In parametric fMRI studies the relationship between the amplitude of the hemodynamic response and electrophysiological or behavioral parameters is commonly analyzed using the general linear model (GLM). We examined ways of using single-trial response time (RT) in the analysis of a decision-making task to better isolate task-specific activation. Methods fMRI and RT data were recorded in twenty-one subjects performing a visual-oddball-task. Four explanatory variables (EVs) were generated for the GLM-analysis: A conventional (constant impulse) EV, a constant epoch EV informed using subjects’ average RT, a variable impulse EV and a variable epoch EV both informed using single…
Dimensional Confinement in Carbon-based Structures - From 3D to 1D
We present an overview of charge transport in selected one-, two- and three-dimensional carbon-based materials with exciting properties. The systems are atomically defined bottom-up synthesized graphene nanoribbons, doped graphene and turbostratic graphene micro-disks, where up to 100 graphene layers are rotationally stacked. For turbostratic graphene we show how this system lends itself to spintronic applications. This follows from the inner graphene layers where charge carriers are protected and thus highly mobile. Doped graphene and graphene nanoribbons offer the possibility to tailor the electronic properties of graphene either by introducing heteroatoms or by confining the system geome…
Robust Two-Dimensional Electronic Properties in Three-Dimensional Microstructures of Rotationally Stacked Turbostratic Graphene
We report on the electronic properties of turbostratic graphitic microdisks, rotationally stacked systems of graphene layers, where interlayer twisting leads to electronic decoupling resulting in charge-transport properties that retain the two dimensionality of graphene, despite the presence of a large number of layers. A key fingerprint of this reduced dimensionality is the effect of weak charge-carrier localization that we observe at low temperatures. The disks' resistivity measured as a function of magnetic field changes its shape from parabolic at room temperature to linear at a temperature of 2.7 K indicating further this type of two-dimensional transport. Compared to Bernal stacked gr…
Electroburning of few-layer graphene flakes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum
Graphene-based electrodes are very promising for molecular electronics and spintronics. Here we report a systematic characterization of the electroburning (EB) process, leading to the formation of nanometer-spaced gaps, on different types of few-layer graphene (namely mechanically exfoliated graphene on SiO2, graphene epitaxially grown on the C-face of SiC and turbostratic graphene discs deposited on SiO2) under air and vacuum conditions. The EB process is found to depend on both the graphene type and on the ambient conditions. For the mechanically exfoliated graphene, performing EB under vacuum leads to a higher yield of nanometer-gap formation than working in air. Conversely, for graphene…
Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration
Graphene nanoribbons (GNRs), quasi-one-dimensional graphene strips, have shown great potential for nanoscale electronics, optoelectronics, and photonics. Atomically precise GNRs can be "bottom-up" synthesized by surface-assisted assembly of molecular building blocks under ultra-high-vacuum conditions. However, large-scale and efficient synthesis of such GNRs at low cost remains a significant challenge. Here we report an efficient "bottom-up" chemical vapor deposition (CVD) process for inexpensive and high-throughput growth of structurally defined GNRs with varying structures under ambient-pressure conditions. The high quality of our CVD-grown GNRs is validated by a combination of different …
Temperature-dependent magnetic anisotropy in the layered magnetic semiconductors CrI3 and CrBr3
Chromium trihalides are layered and exfoliable semiconductors and exhibit unusual magnetic properties with a surprising temperature dependence of the magnetization. By analyzing the evolution of the magnetocrystalline anisotropy with temperature in chromium iodide $\mathrm{Cr}{\mathrm{I}}_{3}$, we find it strongly changes from ${K}_{u}=300\ifmmode\pm\else\textpm\fi{}50\phantom{\rule{4pt}{0ex}}\mathrm{kJ}/{\mathrm{m}}^{3}$ at $5\phantom{\rule{4pt}{0ex}}\mathrm{K}$ to ${K}_{u}=43\ifmmode\pm\else\textpm\fi{}7\phantom{\rule{4pt}{0ex}}\mathrm{kJ}/{\mathrm{m}}^{3}$ at $60\phantom{\rule{4pt}{0ex}}\mathrm{K}$, close to the Curie temperature. We draw a direct comparison to $\mathrm{CrB}{\mathrm{r}}_…
Hysteresis in graphene nanoribbon field-effect devices
Hysteresis in the current response to a varying gate voltage is a common spurious effect in carbon-based field effect transistors. Here, we use electric transport measurements to probe the charge transport in networks of armchair graphene nanoribbons with a width of either 5 or 9 carbon atoms, synthesized in a bottom-up approach using chemical vapor deposition. Our systematic study on the hysteresis of such graphene nanoribbon transistors, in conjunction with temperature-dependent transport measurements shows that the hysteresis can be fully accounted for by trapping/detrapping carriers in the SiO2 layer. We extract the trap densities and depth, allowing us to identify shallow traps as the …
CCDC 1521825: Experimental Crystal Structure Determination
Related Article: Zongping Chen, Wen Zhang, Carlos-Andres Palma, Alberto Lodi Rizzini, Bilu Liu, Ahmad Abbas, Nils Richter, Leonardo Martini, Xiao-Ye Wang, Nicola Cavani, Hao Lu, Neeraj Mishra, Camilla Coletti, Reinhard Berger, Florian Klappenberger, Mathias Kläui, Andrea Candini, Marco Affronte, Chongwu Zhou, Valentina De Renzi, Umberto del Pennino, Johannes V. Barth, Hans Joachim Räder, Akimitsu Narita, Xinliang Feng, and Klaus Müllen|2016|J.Am.Chem.Soc.|138|15488|doi:10.1021/jacs.6b10374