0000000001319700

AUTHOR

Jean-louis Mergny

showing 13 related works from this author

“ One Ring to Bind Them All ”—Part I: The Efficiency of the Macrocyclic Scaffold for G-Quadruplex DNA Recognition

2010

International audience; Macrocyclic scaffolds are particularly attractive for designing selective G-quadruplex ligands essentially because, on one hand, they show a poor affinity for the "standard" B-DNA conformation and, on the other hand, they fit nicely with the external G-quartets of quadruplexes. Stimulated by the pioneering studies on the cationic porphyrin TMPyP4 and the natural product telomestatin, follow-up studies have developed, rapidly leading to a large diversity of macrocyclic structures with remarkable-quadruplex binding properties and biological activities. In this review we summarize the current state of the art in detailing the three main categories of quadruplex-binding …

ScaffoldArticle Subjectlcsh:QH426-470Review ArticleBiology010402 general chemistryBioinformaticsRing (chemistry)G-quadruplex01 natural sciencesBiochemistryTelomestatinlcsh:Biochemistrychemistry.chemical_compound[CHIM] Chemical Sciences[CHIM]Chemical Scienceslcsh:QD415-436Molecular BiologyDna recognitionComputingMilieux_MISCELLANEOUSNatural product010405 organic chemistryBinding propertiesPorphyrinCombinatorial chemistry3. Good health0104 chemical scienceslcsh:Geneticschemistry
researchProduct

An oxidatively damaged G-quadruplex/hemin DNAzyme.

2020

International audience; Oxidative damage of guanine to 8-oxoguanine triggers a partial and variable loss of G-quadruplex/hemin DNAzyme activity and provides clues to the mechanistic origins of DNAzyme deactivation, which originates from an interplay between decreased G-quadruplex stability, lower hemin affinity and a modification of the nature of hemin binding sites.

GuanineGuanineDeoxyribozyme010402 general chemistryG-quadruplex01 natural sciencesCatalysisOxidative damage03 medical and health scienceschemistry.chemical_compoundMaterials Chemistrypolycyclic compoundsheterocyclic compoundsBinding site[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]030304 developmental biology0303 health sciencesMolecular StructureMetals and AlloysGeneral ChemistryDNA Catalyticequipment and supplies0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsG-QuadruplexeschemistryCeramics and CompositesBiophysicsOxidation-ReductionHeminChemical communications (Cambridge, England)
researchProduct

How Proximal Nucleobases Regulate the Catalytic Activity of G-Quadruplex/Hemin DNAzymes

2018

International audience; G-quadruplexes (G4s) are versatile catalytic DNAs when combined with hemin. Despite the repertoire of catalytically competent G4/hemin complexes studied so far, little is known about the detailed catalytic mechanism of these biocatalysts. Herein, we have carried out an in-depth analysis of the hemin binding site within the G4/hemin catalysts, providing the porphyrinic cofactor with a controlled nucleotidic environment. We intensively assessed the position-dependent catalytic enhancement in model reactions and found that proximal nucleobases enhance the catalytic ability of the G4/hemin complexes. Our results allow for revisiting the mechanism of the G4/hemin-based ca…

G4-based catalystDNAzymeproximal nucleobasesDeoxyribozyme010402 general chemistryG-quadruplex01 natural sciencesCatalysisCofactorCatalysisNucleobasechemistry.chemical_compoundG4/hemin complexpolycyclic compoundsNucleotideheterocyclic compoundsBinding sitechemistry.chemical_classificationbiology010405 organic chemistryG-quartetGeneral Chemistry[CHIM.CATA]Chemical Sciences/Catalysisequipment and suppliesCombinatorial chemistry0104 chemical scienceschemistrybiology.proteinHemin
researchProduct

Fishing for G-quadruplexes in solution with a perylene diimide derivative labeled with biotins

2018

A new fluorescent, non‐cytotoxic perylene diimide derivative with two biotins at the peri position, PDI2B, has been synthesized. This molecule is able to interact selectively with G‐quadruplexes with scarce or no affinity towards single‐ or double‐stranded DNA. These features have made it possible to design a simple, effective, safe, cheap, and selective method for fishing G‐quadruplex structures in solution by use of PDI2B and streptavidin coated magnetic beads. The new cyclic method reported leads to the recovery of more than 80 % of G‐quadruplex structures from solution, even in the presence of an excess of single‐stranded or duplex DNA as competitors. Moreover, PDI2B is a G4 ligand that…

0301 basic medicinePerilipin-1Surface PropertiesBiotinDNA Single-StrandedImidesLigandsCatalysisCatalysi03 medical and health sciencesheterocyclic compoundsPeryleneG-quadruplexeFluorescent DyesPerileneChemistryOrganic ChemistryQuímicaGeneral ChemistryDNAG-QuadruplexesSolutionsChemistry030104 developmental biologyBiophysicNucleic acidMagnetsChristian ministryStreptavidinHumanities
researchProduct

Recognition of G-quadruplex DNA by triangular star-shaped compounds: with or without side chains?

2011

International audience; We report the synthesis of two new series of triangular aromatic platforms, either with three aminoalkyl side chains (triazatrinaphthylene series, TrisK: six compounds), or without side chains (triazoniatrinaphthylene, TrisQ). The quadruplex-DNA binding behavior of the two series, which differ essentially by the localization of the cationic charges, was evaluated by means of FRET-melting and G4-FID assays. For the trisubstituted triazatrinaphthylenes (TrisK), the length of the substituents and the presence of terminal hydrogen-bond-donor groups (NH(2)) were shown to be crucial for ensuring a high quadruplex affinity (ΔT(1/2) values of up to 20 °C at 1 μM for the best…

Models MolecularStereochemistryIonic bonding010402 general chemistryG-quadruplexLigands01 natural sciencesCatalysischemistry.chemical_compoundStructure-Activity RelationshipHeterocyclic Compounds[CHIM] Chemical SciencesSide chainMoleculeStructure–activity relationship[CHIM]Chemical SciencesComputingMilieux_MISCELLANEOUSMolecular Structure010405 organic chemistryHydrogen bond[CHIM.ORGA]Chemical Sciences/Organic chemistryOrganic ChemistryGeneral Chemistry0104 chemical sciencesG-QuadruplexeschemistryAcridinesSelectivityAzo CompoundsDNAChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Harmonization of QSAR Best Practices and Molecular Docking Provides an Efficient Virtual Screening Tool for Discovering New G-Quadruplex Ligands

2015

Telomeres and telomerase are key players in tumorogenesis. Among the various strategies proposed for telomerase inhibition or telomere uncapping, the stabilization of telomeric G-quadruplex (G4) structures is a very promising one. Additionally, G4 stabilizing ligands also act over tumors mediated by the alternative elongation of telomeres. Accordingly, the discovery of novel compounds able to act on telomeres and/or inhibit the telomerase enzyme by stabilizing DNA telomeric G4 structures as well as the development of approaches efficiently prioritizing such compounds constitute active areas of research in computational medicinal chemistry and anticancer drug discovery. In this direction, we…

Quantitative structure–activity relationshipTelomeraseGeneral Chemical EngineeringDrug Evaluation PreclinicalQuantitative Structure-Activity RelationshipComputational biologyLibrary and Information SciencesBiologyG-quadruplexCrystallography X-RayLigandsMolecular Docking Simulationchemistry.chemical_compoundDrug DiscoveryHumansCell ProliferationGeneticsVirtual screeningMolecular StructureDrug discoveryQSARGeneral ChemistryFibroblastsTelomereComputer Science ApplicationsTelomereG-QuadruplexesMolecular Docking SimulationchemistryAcridinesDNAHeLa Cells
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

DOTASQ as a prototype of nature-inspired G-quadruplex ligand

2011

DOTASQ (for DOTA-templated Synthetic G-quartet) is the first prototype of nature-inspired G-quadruplex ligand: its design, founded on a possible intramolecular G-quartet formation, enables it to interact with G-quadruplex DNA via an unprecedented nature-mimicking binding mode, based on the association between two G-quartets, one being native (quadruplex) and the other one artificial (ligand).

Models MolecularGuanineMacrocyclic CompoundsStereochemistryAntineoplastic AgentsLigands010402 general chemistryG-quadruplex01 natural sciencesCatalysischemistry.chemical_compoundMaterials ChemistryHumans[CHIM]Chemical SciencesNature inspiredTerbiumComputingMilieux_MISCELLANEOUSBinding SitesFourier Analysis010405 organic chemistryMetals and AlloysGeneral ChemistryLigand (biochemistry)0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsG-QuadruplexeschemistryMolecular ProbesIntramolecular forceCeramics and CompositesNucleic Acid ConformationHydrophobic and Hydrophilic InteractionsDNA
researchProduct

The catalytic properties of DNA G-quadruplexes rely on their structural integrity

2021

International audience; The influence of the G-quartet structural integrity on the catalytic activity of the G-quadruplex (G4) was investigated by comparing the G4-DNAzyme performances of a series of G4s with a G-vacancy site and a G-triplex (G-tri). The results presented herein not only confirm that the structural integrity of the 3’-end G-quartet is necessary for G4s to be catalytically competent but also show how to remediate G-vacancy-mediated catalytic activity losses via the addition of guanine surrogates in an approach referred to as G-vacancy complementation strategy that is applicable to parallel G4s only. Furthermore, this study demonstrates that the terminal G-quartet could act a…

GuanineG-vacancy02 engineering and technology010402 general chemistryG-quadruplex01 natural sciencesCofactorCatalysischemistry.chemical_compoundNucleotideG-quartet integrity[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM][SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]chemistry.chemical_classificationbiologyG-quadruplex[CHIM.CATA] Chemical Sciences/CatalysisGeneral Medicine[CHIM.CATA]Chemical Sciences/Catalysis021001 nanoscience & nanotechnology0104 chemical sciencesComplementationGuanine surrogatechemistrybiology.proteinBiophysicsG-quadruplex DNAzyme0210 nano-technologyDNAHemin
researchProduct

“One Ring to Bind Them All”—Part II: Identification of Promising G-Quadruplex Ligands by Screening of Cyclophane-Type Macrocycles

2010

A collection of 26 polyammonium cyclophane-type macrocycles with a large structural diversity has been screened for G-quadruplex recognition. A two-step selection procedure based on the FRET-melting assay was carried out enabling identification of macrocycles of high affinity (ΔT1/2up to30°C) and high selectivity for the human telomeric G-quadruplex. The four selected hits possess sophisticated architectures, more particularly the presence of a pendant side-arm as well as the existence of a particular topological arrangement appear to be strong determinants of quadruplex binding. These compounds are thus likely to create multiple contacts with the target that may be at the origin of their h…

lcsh:QH426-470Article SubjectHigh selectivityStructural diversityBiology010402 general chemistryRing (chemistry)G-quadruplexBioinformatics01 natural sciencesBiochemistrylcsh:Biochemistry03 medical and health scienceschemistry.chemical_compound[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologylcsh:QD415-436Molecular Biology030304 developmental biology0303 health sciencesCombinatorial chemistry0104 chemical scienceslcsh:GeneticschemistryIdentification (biology)CyclophaneResearch ArticleJournal of Nucleic Acids
researchProduct

A Push-Pull Mechanism Helps Design Highly Competent G-Quadruplex-DNA Catalysts

2021

International audience; Massive efforts are currently being invested to improve the performance, versatility, and scope of applications of nucleic acid catalysts. G-quadruplex (G4)/hemin DNAzymes are of particular interest owing to their structural programmability and chemical robustness. However, optimized catalytic efficiency is still bottleneck and the activation mechanism is unclear. Herein, we have designed a series of parallel G4s with different proximal cytosine (dC) derivatives to fine-tune the hemin-binding pocket for G4-DNAzymes. Combining theoretical and experimental methods, we have assessed the dependence of catalytic enhancement on the electronic properties of proximal dCs and…

[SDV.BIO]Life Sciences [q-bio]/BiotechnologyDNAzymeDeoxyribozyme010402 general chemistryG-quadruplex01 natural sciencesCatalysischemistry.chemical_compoundPush–pull mechanismG-quadruplex010405 organic chemistryChemistryMechanism (biology)Robustness (evolution)[CHIM.CATA] Chemical Sciences/CatalysisGeneral Chemistry[CHIM.CATA]Chemical Sciences/CatalysisCombinatorial chemistry0104 chemical sciences[SDV.BIO] Life Sciences [q-bio]/Biotechnology[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryNucleic acidHeminDNAHeminElectron density
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct

CCDC 782553: Experimental Crystal Structure Determination

2016

Related Article: Hélène Bertrand, Anton Granzhan, David Monchaud, Nicolas Saettel, Régis Guillot, Sarah Clifford, Aurore Guédin, Jean-Louis Mergny, Marie-Paule Teulade-Fichou|2011|Chem.-Eur.J.|17|4529|doi:10.1002/chem.201002810

dipyrido[12-b:1'2'-j]quinolizino[32-f][28]phenanthrolinetriium tris(tetrafluoroborate) monohydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct