6533b7cefe1ef96bd1257055
RESEARCH PRODUCT
Evidence for the mechanosensor function of filamin in tissue development
Nicholas H. BrownJari YlänneJari YlänneNina RintanenR. SethiSven Huelsmannsubject
MaleTalin0301 basic medicineanimal structuresFilaminsMutantmacromolecular substancesPlasma protein bindingFilaminmedicine.disease_causeArticle03 medical and health sciencesFilamin bindingOogenesismedicineAnimalsActinOvumMutationMultidisciplinarybiologyta1182VinculinActinsVinculin3. Good healthCell biology030104 developmental biologymechanosensor functionMutationddc:000biology.proteinDrosophilaFemaletissue developmentFunction (biology)Protein Bindingdescription
AbstractCells integrate mechanical properties of their surroundings to form multicellular, three-dimensional tissues of appropriate size and spatial organisation. Actin cytoskeleton-linked proteins such as talin, vinculin and filamin function as mechanosensors in cells, but it has yet to be tested whether the mechanosensitivity is important for their function in intact tissues. Here we tested, how filamin mechanosensing contributes to oogenesis in Drosophila. Mutations that require more or less force to open the mechanosensor region demonstrate that filamin mechanosensitivity is important for the maturation of actin-rich ring canals that are essential for Drosophila egg development. The open mutant was more tightly bound to the ring canal structure while the closed mutant dissociated more frequently. Thus, our results show that an appropriate level of mechanical sensitivity is required for filamins’ function and dynamics during Drosophila egg growth and support the structure-based model in which the opening and closing of the mechanosensor region regulates filamin binding to cellular components.
year | journal | country | edition | language |
---|---|---|---|---|
2016-09-06 | Scientific Reports |