6533b7d0fe1ef96bd125a425

RESEARCH PRODUCT

Phased laser diode array permits selective excitation of ultrasonic guided waves in coated bone-mimicking tubes

Petro MoilanenPetro MoilanenAri SalmiJussi TimonenZuomin ZhaoVantte KilappaEdward Hæggström

subject

Materials scienceOpacityultrasonicsGeneral Physics and Astronomy02 engineering and technologyengineering.material01 natural sciences114 Physical scienceslaw.inventionOpticsCoatinglaw0103 physical sciencespolymeeritpolymersacoustical properties010302 applied physicsta114Laser diodebusiness.industryUltrasoundwaveguides021001 nanoscience & nanotechnologyPhotoexcitationlaseritengineeringUltrasonic sensor0210 nano-technologybusinesslasersExcitationEnergy (signal processing)

description

This paper validates simulation predictions, which state that specific modes could be enhanced in quantitative ultrasonic bone testing. Tunable selection of ultrasonic guided wave excitation is useful in non-destructive testing since it permits the mediation of energy into diagnostically useful modes while reducing the energy mediated into disturbing contributions. For instance, it is often challenging to distinguish and extract the useful modes from ultrasound signals measured in bone covered by a soft tissue. We show that a laser diode array can selectively excite ultrasound in bone mimicking phantoms. A fiber-coupled diode array (4 elements) illuminated two solid tubes (2-3mm wall thickness) embraced by an opaque soft-tissue mimicking elastomer coating (5mm thick). A predetermined time delay matching the selected mode and frequency was employed between the outputs of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results suggest that this array reduces the disturbances caused by the elastomer cover and so pave way to permit non-contacting in vivo guided wave ultrasound assessment of human bones. The implementation is small, inexpensive, and robust in comparison with the conventional pulsed lasers. Published by AIP Publishing. Peer reviewed

http://urn.fi/URN:NBN:fi:jyu-201710113979