6533b7d0fe1ef96bd125a632

RESEARCH PRODUCT

First Measurement of the Absolute Branching Fraction of Λ→pμ−ν¯μ

Ablikim MAchasov M NAdlarson PAhmed SAlbrecht MAliberti RAmoroso AAn M RAn QBai X HBai YBakina OBaldini Ferroli RBalossino IBan YBegzsuren KBerger NBertani MBettoni DBianchi FBloms JBortone ABoyko IBriere R ACai HCai XCalcaterra ACao G FCao NCetin S AChang J FChang W LChelkov GChen D YChen GChen H SChen M LChen S JChen X RChen Y BChen Z JCheng W SCibinetto GCossio FCui X FDai H LDai J PDai X CDbeyssi ADe Boer R EDedovich DDeng Z YDenig ADenysenko IDestefanis MDe Mori FDing YDong CDong JDong L YDong M YDong XDu S XFan Y LFang JFang S SFang YFarinelli RFava LFeldbauer FFelici GFeng C QFeng J HFritsch MFu C DGao YGao YGao YGao Y GGarzia IGe P TGeng CGersabeck E MGilman AGoetzen KGong LGong W XGradl WGreco MGu L MGu M HGu Y TGuan C YGuo A QGuo L BGuo R PGuo Y PGuskov AHan T THan W YHao X QHarris F AHe K LHeinsius F HHeinz C HHeng Y KHerold CHimmelreich MHoltmann THou G YHou Y RHou Z LHu H MHu J FHu THu YHuang G SHuang L QHuang X THuang Y PHuang ZHussain THüsken NIkegami Andersson WImoehl WIrshad MJaeger SJanchiv SJi QJi Q PJi X BJi X LJi Y YJiang H BJiang X SJiao J BJiao ZJin SJin YJing M QJohansson TKalantar-nayestanaki NKang X SKappert RKavatsyuk MKe B CKeshk I KKhoukaz AKiese PKiuchi RKliemt RKoch LKolcu O BKopf BKuemmel MKuessner MKupsc AKurth M GKühn WLane J JLange J SLarin PLavania ALavezzi LLei Z HLeithoff HLellmann MLenz TLi CLi C HLi ChengLi D MLi FLi GLi HLi HLi H BLi H JLi J LLi J QLi J SLi KeLi L KLi LeiLi P RLi S YLi W DLi W GLi X HLi X LLi XiaoyuLi Z YLiang HLiang HLiang HLiang Y FLiang Y TLiao G RLiao L ZLibby JLimphirat ALin C XLin TLiu B JLiu C XLiu DLiu F HLiu FangLiu FengLiu H BLiu H MLiu HuanhuanLiu HuihuiLiu J BLiu J LLiu J YLiu KLiu K YLiu KeLiu LLiu M HLiu P LLiu QLiu QLiu S BLiu ShuaiLiu TLiu TLiu W MLiu XLiu YLiu Y BLiu Z ALiu Z QLou X CLu F XLu H JLu J DLu J GLu X LLu YLu Y PLuo C LLuo M XLuo P WLuo TLuo X LLyu X RMa F CMa H LMa L LMa M MMa Q MMa R QMa R TMa X XMa X YMaas F EMaggiora MMaldaner SMalde SMalik Q AMangoni AMao Y JMao Z PMarcello SMeng Z XMesschendorp J GMezzadri GMin T JMitchell R EMo X HMuchnoi N YuMuramatsu HNakhoul SNefedov YNerling FNikolaev I BNing ZNisar SOlsen S LOuyang QPacetti SPan XPan YPathak APathak APatteri PPelizaeus MPeng H PPeters KPettersson JPing J LPing R GPogodin SPoling RPrasad VQi HQi H RQi K HQi MQi T YQian SQian W BQian ZQiao C FQin L QQin X PQin X SQin Z HQiu J FQu S QRashid K HRavindran KRedmer C FRivetti ARodin VRolo MRong GRosner ChRump MSang H SSarantsev ASchelhaas YSchnier CSchoenning KScodeggio MShan D CShan WShan X YShangguan J FShao MShen C PShen H FShen P XShen X YShi H CShi R SShi XShi X DSong J JSong W MSong Y XSosio SSpataro SSu K XSu P PSui F FSun G XSun H KSun J FSun LSun S SSun TSun W YSun W YSun XSun Y JSun Y ZSun Z TTan Y HTan Y XTang C JTang G YTang JTeng J XThoren VTian W HTian Y TUman IWang BWang C WWang D YWang H JWang H PWang KWang L LWang MWang M ZWang MengWang SWang WWang W HWang W PWang XWang X FWang X LWang YWang YWang Y DWang Y FWang Y QWang Y YWang ZWang Z YWang ZiyiWang ZongyuanWei D HWeidner FWen S PWhite D JWiedner UWilkinson GWolke MWollenberg LWu J FWu L HWu L JWu XWu ZXia LXiao HXiao S YXiao Z JXie X HXie Y GXie Y HXing T YXu C JXu G FXu Q JXu WXu X PXu Y CYan FYan LYan W BYan W CYan XuYang H JYang H XYang LYang S LYang Y XYang YifanYang ZhiYe MYe M HYin J HYou Z YYu B XYu C XYu GYu J SYu TYuan C ZYuan LYuan X QYuan YYuan Z YYue C XZafar A AZeng X ZengZeng YZhang A QZhang B XZhang GuangyiZhang HZhang H HZhang H HZhang H YZhang J LZhang J QZhang J WZhang J YZhang J ZZhang JianyuZhang JiaweiZhang L MZhang L QZhang LeiZhang SZhang S FZhang ShuleiZhang X DZhang X YZhang YZhang Y TZhang Y HZhang YanZhang YaoZhang Z YZhao GZhao JZhao J YZhao J ZZhao LeiZhao LingZhao M GZhao QZhao S JZhao Y BZhao Y XZhao Z GZhemchugov AZheng BZheng J PZheng Y HZhong BZhong CZhou L PZhou QZhou XZhou X KZhou X RZhou X YZhu A NZhu JZhu KZhu K JZhu S HZhu T JZhu W JZhu W JZhu Y CZhu Z AZou B SZou J H

subject

PhysicsMeasurementAnnihilationBranching010308 nuclear & particles physicsBranching fractionmedia_common.quotation_subjectGeneral Physics and AstronomyAbsoluteTime based01 natural sciencesAsymmetryNOStandard ModelSubatomär fysikSubatomic Physics0103 physical sciencesCP violationAtomic physics010306 general physicsLeptonmedia_common

description

The absolute branching fraction of Λ→pμ−ν¯μ is reported for the first time based on an e+e− annihilation sample of 10×109 J/ψ events collected with the BESIII detector at s=3.097 GeV. The branching fraction is determined to be B(Λ→pμ−ν¯μ)=[1.48±0.21(stat)±0.08(syst)]×10−4, which is improved by about 30% in precision over the previous indirect measurements. Combining this result with the world average of B(Λ→pe−ν¯e), we obtain the ratio {[Γ(Λ→pμ−ν¯μ)]/[Γ(Λ→pe−ν¯e)]} to be 0.178±0.028, which agrees with the standard model prediction assuming lepton flavor universality. The asymmetry of the branching fractions of Λ→pμ−ν¯μ and Λ¯→p¯μ+νμ is also determined, and no evidence for CP violation is found.

https://doi.org/10.1103/physrevlett.127.121802