6533b823fe1ef96bd127f144

RESEARCH PRODUCT

7-Nitroindazole protects striatal neurons against MPP+ -induced degeneration.

Di Matteo VPierucci MGiuliano DaEsposito EArcangelo BenignoGiuseppe CrescimannoGiuseppe Di Giovanni

subject

PARKINSONS-DISEASERAT STRIATUMMONOAMINE-OXIDASENITRIC-OXIDE SYNTHASEBRAINNEURODEGENERATIVE DISEASESSODIUM-SALICYLATEMPTP NEUROTOXICITYTRANSPORTER ACTIVITYLIPID-PEROXIDATION

description

The neuropathological hallmark of Parkinson's disease (PD) is the selective degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). In this study, using a microdialysis technique, we investigated whether an inhibitor of neuronal nitric oxide synthase (nNOS), 7-nitrindazole (7-NI), could protect against DAergic neuronal damage induced by in vivo infusion of 1-methyl-4-phenylpiridinium iodide (MPP+) in freely moving rats. Experiments were performed over 2 days in three groups of rats: (a) nonlesioned, (b) MPP+-lesioned, and (c) 7-NI pretreated MPP+-lesioned rats. On day 1, control rats were perfused with an artificial CSF, while 1 mM MPP+ was infused into the striatum for 10 min in the other two groups. The infusion of the MPP+ produced a neurotoxic damage of the SNc DA neurons and increased striatal DA levels. On day 2, 1 mM MPP+ was reperfused for 10 min into the striata of each rat group and DA levels were measured as an index of neuronal cell integrity. The limited rise of DA following MPP+ reperfusion in the MPP+-lesioned rats was due to toxin-induced neuronal loss and was reversed by pretreatment with 7-NI (50 mg/kg, intraperitoneally) on day 1, indicating a neuroprotective effect by inhibiting NO formation. These results indicate that neuronally derived NO partially mediates MPP+-induced neurotoxicity. The similarity between the MPP+ model and PD suggests that NO may play a significant role in its etiology.

10.1196/annals.1386.015http://hdl.handle.net/10447/15886