6533b82dfe1ef96bd1292039

RESEARCH PRODUCT

Photoconductive properties of Bi2S3nanowires

Gunta KunakovaDonats ErtsJustin D. HolmesJustin D. HolmesJustin Manjaly VargheseJana Andzane

subject

Materials sciencePhotoconductivityPHOTODETECTORSThin filmsPhotoconductivity spectrumAluminaNanowireGeneral Physics and AstronomyNanotechnologySemiconductor growth02 engineering and technology010402 general chemistryNanofabrication01 natural sciencesSemiconductor materialsTHIN-FILMSThin filmONE-DIMENSIONAL NANOSTRUCTURESArraysPhotocurrentOne-dimensional nanostructuresMembranesNanowire surfaceNanowiresbusiness.industryAnodizingPhotoconductivityPhotodetectors021001 nanoscience & nanotechnologyCharge carrier trappingARRAYS0104 chemical sciencesMembraneNanolithographyIllumination intensityAnodized aluminaPhotoconductive propertiesSemiconductor quantum wiresOptoelectronicsAlumina membranesCharge carrierElectron trapsPhoton energy0210 nano-technologybusinessBismuth compounds

description

The photoconductive properties of Bi2S3 nanowires synthesized inside anodized alumina (AAO) membrane have been characterized as a function of illuminating photon energy between the wavelengths of 500 to 900 nm and at constant illumination intensity of 1–4 μW·cm−2. Photoconductivity spectra, photocurrent values, photocurrent onset/decay times of individual Bi2S3 nanowires liberated from the AAO membrane were determined and compared with those of arrays of as-produced Bi2S3 nanowires templated inside pores of AAO membrane. The alumina membrane was found to significantly influence the photoconductive properties of the AAO-hosted Bi2S3 nanowires, when compared to liberated from the AAO membrane individual Bi2S3 nanowires, possibly due to charge carrier trapping at the interface between the nanowire surface and the pore walls.

https://doi.org/10.1063/1.4907867