6533b856fe1ef96bd12b292f

RESEARCH PRODUCT

DFT calculation of 1J(119Sn,13C) and 2J(119Sn,1H) coupling constants in di- and trimethyltin(IV) compounds

Giacomo SaielliGirolamo CasellaFrancesco Ferrante

subject

Carbon Isotopes; Dipeptides; Glycylglycine; Hydrogen; Organotin Compounds; Solvents; Tin; Trimethyltin Compounds; Water; Quantum Theorychemistry.chemical_elementInorganic ChemistryOrganotin(IV) DFT NMR relativistic effects tin couplingsComputational chemistryOrganotin CompoundsMoleculePhysical and Theoretical ChemistryBasis setCoupling constantCarbon IsotopesNMR tin derivatives coupling constantsTrimethyltin CompoundsbiologyGlycylglycineWaterDipeptidesbiology.organism_classificationHybrid functionalSolventchemistryTinSolventsQuantum TheoryTetraSolvent effectsTinHydrogen

description

We have tested several computational protocols, at the nonrelativistic DFT level of theory, for the calculation of 1J(119Sn, 13C) and 2J(119Sn, 1H) spin-spin coupling constants in di- and trimethyltin(IV) derivatives with various ligands. Quite a good agreement with experimental data has been found with several hybrid functionals and a double-zeta basis set for a set of molecules comprising tetra-, penta-, and hexa-coordinated tin(IV). Then, some of the protocols have been applied to the calculation of the 2J(119Sn, 1H) of the aquodimethyltin(IV) ion and dimethyltin(IV) complex with D-ribonic acid and to the calculation of 1J(119Sn, 13C) and 2J(119Sn, 1H) of the dimethyltin(IV)-glycylglycine and glycylhistidine complexes in water solutions. Solvent effects have been considered in these cases by including explicit water molecules and/or the solvent reaction field, resulting in a good agreement with experimental data. The proposed protocols constitute a helpful tool for the structural determination of di- and triorganotin(IV) derivatives.

10.1021/ic8000976http://hdl.handle.net/10447/34841