6533b85ffe1ef96bd12c12eb

RESEARCH PRODUCT

Real time optical immunosensing with flow-through porous alumina membranes

Kristinn B. GylfasonTormod VoldenMarcella ChiariMarina CretichDaniel HillMarcus J. SwannJesús ÁLvarezLaura Sola

subject

StreptavidinAnalyteOptical biosensingMaterials scienceAnalytical chemistryPorous aluminaquantum dotsForm birefringencechemistry.chemical_compoundCopolymerPolarimetryMaterials ChemistryCopolymermedicineFluidicsAnnan elektroteknik och elektronikElectrical and Electronic EngineeringPorosityInstrumentationcopolymerOther Electrical Engineering Electronic Engineering Information Engineeringmedicine.diagnostic_testQuantum dotsMetals and AlloysCondensed Matter PhysicsNoise floorSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMembranechemistryImmunoassay

description

Through the presentation of analytical data from bioassay experiments, measured by polarimetry, we demonstrate for the first time a real time immunoassay within a free standing macroporous alumina membrane. The 200 nm nominal pore diameter of the membrane enables flow-through, thereby providing an ideal fluidic platform for the targeted delivery of analytes to bioreceptors immobilized on the pore walls, enabling fast sensing response times and the use of small sample volumes (<100 mu L). For the immunoassay, the pore walls were first coated with the functional copolymer, copoly(DMA-NAS) using a novel coupling process, before immobilization of the allergen protein, beta-lactoglobulin, by spotting. The immuno-assay then proceeded with the binding of the primary and secondary antibody cognates, rabbit anti-beta-lactoglobulin and anti-rabbit IgG respectively. Through the use of streptavidin coated quantum dots as refractive index signal enhancers, a noise floor for individual measurements of 3.7 ng/mL (25 pM) was obtained, with an overall statistical, or formal assay LOD of 33.7 ng/mL (225 pM), for total assay time below 1 h. (C) 2014 Elsevier B.V. All rights reserved.

https://publications.aston.ac.uk/id/eprint/38134/1/Real_time_optical.pdf