Search results for " DYNAMICAL SYSTEM"

showing 10 items of 188 documents

A criterion for zero averages and full support of ergodic measures

2018

International audience; Consider a homeomorphism $f$ defined on a compact metric space $X$ and a continuous map $\phi\colon X \to \mathbb{R}$. We provide an abstract criterion, called control at any scale with a long sparse tail for a point $x\in X$ and the map $\phi$, which guarantees that any weak* limit measure $\mu$ of the Birkhoff average of Dirac measures $\frac1n\sum_0^{n-1}\delta(f^i(x))$ s such that $\mu$-almost every point $y$ has a dense orbit in $X$ and the Birkhoff average of $\phi$ along the orbit of $y$ is zero.As an illustration of the strength of this criterion, we prove that the diffeomorphisms with nonhyperbolic ergodic measures form a $C^1$-open and dense subset of the s…

Pure mathematics37D25 37D30 37D35 28D99Mathematics::Dynamical SystemsDense setGeneral MathematicsNonhyperbolic measure[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]MSC: 37D25 37D35 37D30 28D99[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Partial hyperbolicity01 natural sciencesMeasure (mathematics)FOS: MathematicsErgodic theoryHomoclinic orbit0101 mathematicsMathematics - Dynamical SystemsMathematicsTransitivity010102 general mathematicsZero (complex analysis)Ergodic measure010101 applied mathematicsCompact spaceHomeomorphism (graph theory)Birkhoff averageOrbit (control theory)Lyapunov exponent
researchProduct

Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence

2020

Let $M$ be a closed 3-manifold which admits an Anosov flow. In this paper we develop a technique for constructing partially hyperbolic representatives in many mapping classes of $M$. We apply this technique both in the setting of geodesic flows on closed hyperbolic surfaces and for Anosov flows which admit transverse tori. We emphasize the similarity of both constructions through the concept of $h$-transversality, a tool which allows us to compose different mapping classes while retaining partial hyperbolicity. In the case of the geodesic flow of a closed hyperbolic surface $S$ we build stably ergodic, partially hyperbolic diffeomorphisms whose mapping classes form a subgroup of the mapping…

Pure mathematics37D30Similarity (geometry)Mathematics::Dynamical SystemsGeodesic[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)dynamical coherenceMSC Primary: 37C15 37D3037C1501 natural sciencessymbols.namesake0103 physical sciencesFOS: MathematicsErgodic theoryMathematics - Dynamical Systems[MATH]Mathematics [math]0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsConjecture010102 general mathematicsSurface (topology)Mathematics::Geometric Topologystable ergodicityMapping class groupFlow (mathematics)Poincaré conjecturesymbols010307 mathematical physicsGeometry and Topologypartially hyperbolic diffeomorphisms
researchProduct

Small $C^1$ actions of semidirect products on compact manifolds

2020

Let $T$ be a compact fibered $3$--manifold, presented as a mapping torus of a compact, orientable surface $S$ with monodromy $\psi$, and let $M$ be a compact Riemannian manifold. Our main result is that if the induced action $\psi^*$ on $H^1(S,\mathbb{R})$ has no eigenvalues on the unit circle, then there exists a neighborhood $\mathcal U$ of the trivial action in the space of $C^1$ actions of $\pi_1(T)$ on $M$ such that any action in $\mathcal{U}$ is abelian. We will prove that the same result holds in the generality of an infinite cyclic extension of an arbitrary finitely generated group $H$, provided that the conjugation action of the cyclic group on $H^1(H,\mathbb{R})\neq 0$ has no eige…

Pure mathematics37D30[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Cyclic groupDynamical Systems (math.DS)Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]57M60$C^1$–close to the identityMathematics - Geometric TopologyPrimary 37C85. Secondary 20E22 57K32[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesMapping torusFOS: Mathematics57R3520E220101 mathematicsAbelian groupMathematics - Dynamical SystemsMathematics37C85010102 general mathematicsGeometric Topology (math.GT)groups acting on manifoldsRiemannian manifoldSurface (topology)57M50fibered $3$–manifoldhyperbolic dynamicsUnit circleMonodromy010307 mathematical physicsGeometry and TopologyFinitely generated groupMathematics - Group Theory
researchProduct

Local multifractal analysis in metric spaces

2013

We study the local dimensions and local multifractal properties of measures on doubling metric spaces. Our aim is twofold. On one hand, we show that there are plenty of multifractal type measures in all metric spaces which satisfy only mild regularity conditions. On the other hand, we consider a local spectrum that can be used to gain finer information on the local behaviour of measures than its global counterpart.

Pure mathematicsApplied MathematicsGeneral Physics and AstronomyMetric Geometry (math.MG)Statistical and Nonlinear PhysicsDynamical Systems (math.DS)Multifractal systemType (model theory)28A80 28D20 54E50Metric spaceLocal spectrumMathematics - Metric GeometryMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - Dynamical SystemsMathematical PhysicsMathematicsNonlinearity
researchProduct

Finite cyclicity of some center graphics through a nilpotent point inside quadratic systems

2015

In this paper we introduce new methods to prove the finite cyclicity of some graphics through a triple nilpotent point of saddle or elliptic type surrounding a center. After applying a blow-up of the family, yielding a singular 3-dimensional foliation, this amounts to proving the finite cyclicity of a family of limit periodic sets of the foliation. The boundary limit periodic sets of these families were the most challenging, but the new methods are quite general for treating such graphics. We apply these techniques to prove the finite cyclicity of the graphic $(I_{14}^1)$, which is part of the program started in 1994 by Dumortier, Roussarie and Rousseau (and called DRR program) to show that…

Pure mathematicsCenter (category theory)Boundary (topology)Dynamical Systems (math.DS)Type (model theory)FoliationNilpotentMathematics (miscellaneous)FOS: MathematicsLimit (mathematics)Point at infinityMathematics - Dynamical Systems34C07 37G15SaddleMathematicsTransactions of the Moscow Mathematical Society
researchProduct

Integrability via Reversibility

2017

Abstract A class of left-invariant second order reversible systems with functional parameter is introduced which exhibits the phenomenon of robust integrability: an open and dense subset of the phase space is filled with invariant tori carrying quasi-periodic motions, and this behavior persists under perturbations within the class. Real-analytic volume preserving systems are found in this class which have positive Lyapunov exponents on an open subset, and the complement filled with invariant tori.

Pure mathematicsClass (set theory)Dense setGeneral Physics and AstronomyLyapunov exponentDynamical Systems (math.DS)IntegrabilityCoexistence of integrability and chaotic behavior01 natural sciencessymbols.namesakeReversibility0103 physical sciencesFOS: MathematicsOrder (group theory)0101 mathematicsInvariant (mathematics)Mathematics - Dynamical SystemsMathematical PhysicsMathematicsComplement (set theory)010102 general mathematicsTorusPhase spacesymbols010307 mathematical physicsGeometry and Topology
researchProduct

Self-affine sets with fibered tangents

2016

We study tangent sets of strictly self-affine sets in the plane. If a set in this class satisfies the strong separation condition and projects to a line segment for sufficiently many directions, then for each generic point there exists a rotation $\mathcal O$ such that all tangent sets at that point are either of the form $\mathcal O((\mathbb R \times C) \cap B(0,1))$, where $C$ is a closed porous set, or of the form $\mathcal O((\ell \times \{ 0 \}) \cap B(0,1))$, where $\ell$ is an interval.

Pure mathematicsClass (set theory)General MathematicsDynamical Systems (math.DS)Interval (mathematics)iterated function system01 natural sciencesself-affine setGeneric pointLine segmentstrictly self-affine sets0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsPoint (geometry)Porous set0101 mathematicsMathematics - Dynamical SystemsMathematicsApplied Mathematics010102 general mathematicsta111Tangenttangent setsTangent setMathematics - Classical Analysis and ODEs010307 mathematical physicsAffine transformation
researchProduct

Devroye Inequality for a Class of Non-Uniformly Hyperbolic Dynamical Systems

2005

In this paper, we prove an inequality, which we call "Devroye inequality", for a large class of non-uniformly hyperbolic dynamical systems (M,f). This class, introduced by L.-S. Young, includes families of piece-wise hyperbolic maps (Lozi-like maps), scattering billiards (e.g., planar Lorentz gas), unimodal and H{\'e}non-like maps. Devroye inequality provides an upper bound for the variance of observables of the form K(x,f(x),...,f^{n-1}(x)), where K is any separately Holder continuous function of n variables. In particular, we can deal with observables which are not Birkhoff averages. We will show in \cite{CCS} some applications of Devroye inequality to statistical properties of this class…

Pure mathematicsClass (set theory)[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Dynamical systems theoryLorentz transformation[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]General Physics and AstronomyHölder condition[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Of the formDynamical Systems (math.DS)01 natural sciencesUpper and lower bounds010104 statistics & probabilitysymbols.namesakeFOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsProbability (math.PR)Statistical and Nonlinear PhysicsObservableFunction (mathematics)[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]symbols[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Mathematics - Probability
researchProduct

Weakly controlled Moran constructions and iterated functions systems in metric spaces

2011

We study the Hausdorff measures of limit sets of weakly controlled Moran constructions in metric spaces. The separation of the construction pieces is closely related to the Hausdorff measure of the corresponding limit set. In particular, we investigate different separation conditions for semiconformal iterated function systems. Our work generalizes well known results on self-similar sets in metric spaces as well as results on controlled Moran constructions in Euclidean spaces.

Pure mathematicsClosed set28A8028A80 28A78 (Primary); 37C45 (Secondary)General MathematicsHausdorff dimensionDynamical Systems (math.DS)Hausdorff measureCombinatoricsopen set conditionsemikonforminen iteroitu funktiojärjestelmäsemiconformal iterated function systemFOS: Mathematics37C45 (Secondary)Hausdorff measureHausdorff-ulottuvuusMathematics - Dynamical SystemsHausdorffin mittaMathematicsball condition37C45avoimen joukon ehtoMoran-konstruktiofinite clustering propertyInjective metric spaceHausdorff spaceMoran constructionäärellinen pakkautuminenConvex metric space28A80 28A78 (Primary)Metric spaceHausdorff distance28A78palloehtoNormal space
researchProduct

Existence of common zeros for commuting vector fields on 3‐manifolds II. Solving global difficulties

2020

We address the following conjecture about the existence of common zeros for commuting vector fields in dimension three: if $X,Y$ are two $C^1$ commuting vector fields on a $3$-manifold $M$, and $U$ is a relatively compact open such that $X$ does not vanish on the boundary of $U$ and has a non vanishing Poincar\'e-Hopf index in $U$, then $X$ and $Y$ have a common zero inside $U$. We prove this conjecture when $X$ and $Y$ are of class $C^3$ and every periodic orbit of $Y$ along which $X$ and $Y$ are collinear is partially hyperbolic. We also prove the conjecture, still in the $C^3$ setting, assuming that the flow $Y$ leaves invariant a transverse plane field. These results shed new light on t…

Pure mathematicsConjectureGeneral Mathematics37C85010102 general mathematicsZero (complex analysis)Boundary (topology)Field (mathematics)Dynamical Systems (math.DS)01 natural sciences37C25Flow (mathematics)Relatively compact subspace0103 physical sciences58C30 (primary)FOS: MathematicsVector field010307 mathematical physics0101 mathematicsInvariant (mathematics)Mathematics - Dynamical Systems[MATH]Mathematics [math]57S05Mathematics
researchProduct