Search results for " Neural Networks."

showing 10 items of 374 documents

Cross-Sensor Adversarial Domain Adaptation of Landsat-8 and Proba-V images for Cloud Detection

2021

The number of Earth observation satellites carrying optical sensors with similar characteristics is constantly growing. Despite their similarities and the potential synergies among them, derived satellite products are often developed for each sensor independently. Differences in retrieved radiances lead to significant drops in accuracy, which hampers knowledge and information sharing across sensors. This is particularly harmful for machine learning algorithms, since gathering new ground truth data to train models for each sensor is costly and requires experienced manpower. In this work, we propose a domain adaptation transformation to reduce the statistical differences between images of two…

FOS: Computer and information sciencesAtmospheric ScienceComputer Science - Machine LearningGenerative adversarial networks010504 meteorology & atmospheric sciencesComputer scienceRemote sensing applicationdomain adaptationGeophysics. Cosmic physics0211 other engineering and technologiesCloud computing02 engineering and technologycomputer.software_genre01 natural sciencesImage (mathematics)Data modelingMachine Learning (cs.LG)convolutional neural networksFOS: Electrical engineering electronic engineering information engineeringLandsat-8Computers in Earth SciencesAdaptation (computer science)TC1501-1800021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryQC801-809Image and Video Processing (eess.IV)Electrical Engineering and Systems Science - Image and Video ProcessingOcean engineeringTransformation (function)cloud detectionSatelliteData miningProba-VTransfer of learningbusinesscomputer
researchProduct

A Deep Network Approach to Multitemporal Cloud Detection

2018

We present a deep learning model with temporal memory to detect clouds in image time series acquired by the Seviri imager mounted on the Meteosat Second Generation (MSG) satellite. The model provides pixel-level cloud maps with related confidence and propagates information in time via a recurrent neural network structure. With a single model, we are able to outline clouds along all year and during day and night with high accuracy.

FOS: Computer and information sciencesComputer Science - Machine Learning010504 meteorology & atmospheric sciencesComputer scienceFeature extraction0211 other engineering and technologiesCloud detectionFOS: Physical sciencesCloud computing02 engineering and technologyCloud detection01 natural sciencesMachine Learning (cs.LG)Laboratory of Geo-information Science and Remote SensingLaboratorium voor Geo-informatiekunde en Remote Sensing021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingbusiness.industrySeviriDeep learningDeep learningPE&RCPhysics - Atmospheric and Oceanic PhysicsRecurrent neural networkRecurrent neural networksAtmospheric and Oceanic Physics (physics.ao-ph)Convolutional neural networksSatelliteArtificial intelligencebusinessNetwork approachIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Transfer Learning with Convolutional Networks for Atmospheric Parameter Retrieval

2018

The Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp satellite series provides important measurements for Numerical Weather Prediction (NWP). Retrieving accurate atmospheric parameters from the raw data provided by IASI is a large challenge, but necessary in order to use the data in NWP models. Statistical models performance is compromised because of the extremely high spectral dimensionality and the high number of variables to be predicted simultaneously across the atmospheric column. All this poses a challenge for selecting and studying optimal models and processing schemes. Earlier work has shown non-linear models such as kernel methods and neural networks perform w…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceFeature extraction0211 other engineering and technologiesTranfer learningFOS: Physical sciences02 engineering and technologyAtmospheric modelInfrared atmospheric sounding interferometercomputer.software_genreConvolutional neural networkMachine Learning (cs.LG)0202 electrical engineering electronic engineering information engineeringInfrared measurements021101 geological & geomatics engineeringArtificial neural networkStatistical modelNumerical weather predictionParameter retrievalPhysics - Atmospheric and Oceanic PhysicsKernel method13. Climate actionAtmospheric and Oceanic Physics (physics.ao-ph)Convolutional neural networks020201 artificial intelligence & image processingData miningcomputerCurse of dimensionalityIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Neural Teleportation

2023

In this paper, we explore a process called neural teleportation, a mathematical consequence of applying quiver representation theory to neural networks. Neural teleportation "teleports" a network to a new position in the weight space and preserves its function. This phenomenon comes directly from the definitions of representation theory applied to neural networks and it turns out to be a very simple operation that has remarkable properties. We shed light on surprising and counter-intuitive consequences neural teleportation has on the loss landscape. In particular, we show that teleportation can be used to explore loss level curves, that it changes the local loss landscape, sharpens global m…

FOS: Computer and information sciencesComputer Science - Machine LearningGeneral MathematicsComputer Science (miscellaneous)Computer Science - Neural and Evolutionary ComputingQuantum PhysicsNeural and Evolutionary Computing (cs.NE)Engineering (miscellaneous)quiver representations; neural networks; teleportationMachine Learning (cs.LG)
researchProduct

Human experts vs. machines in taxa recognition

2020

The step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets with the transfer learning paradigm and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hier…

FOS: Computer and information sciencesComputer Science - Machine Learninghahmontunnistus (tietotekniikka)Computer scienceClassification approachTaxonomic expert02 engineering and technologyneuroverkotcomputer.software_genreConvolutional neural networkQuantitative Biology - Quantitative MethodsField (computer science)Machine Learning (cs.LG)Machine learning approachesStatistics - Machine LearningAutomated approachDeep neural networks0202 electrical engineering electronic engineering information engineeringTaxonomic rankQuantitative Methods (q-bio.QM)Classification (of information)Artificial neural networksystematiikka (biologia)Prediction accuracyIdentification (information)koneoppiminenMulti-image dataBenchmark (computing)020201 artificial intelligence & image processingConvolutional neural networksComputer Vision and Pattern RecognitionClassification errorsMachine Learning (stat.ML)Machine learningState of the artElectrical and Electronic EngineeringTaxonomySupport vector machinesLearning systemsbusiness.industryNode (networking)020206 networking & telecommunicationsComputer circuitsHierarchical classificationConvolutionSupport vector machineFOS: Biological sciencesTaxonomic hierarchySignal ProcessingBiomonitoringBenchmark datasetsArtificial intelligencebusinesscomputertaksonitSoftware
researchProduct

Rule Extraction From Binary Neural Networks With Convolutional Rules for Model Validation.

2020

Classification approaches that allow to extract logical rules such as decision trees are often considered to be more interpretable than neural networks. Also, logical rules are comparatively easy to verify with any possible input. This is an important part in systems that aim to ensure correct operation of a given model. However, for high-dimensional input data such as images, the individual symbols, i.e. pixels, are not easily interpretable. Therefore, rule-based approaches are not typically used for this kind of high-dimensional data. We introduce the concept of first-order convolutional rules, which are logical rules that can be extracted using a convolutional neural network (CNN), and w…

FOS: Computer and information sciencesComputer Science - Machine Learningstochastic local searchrule extractionComputer Science - Artificial Intelligencelogical rulesQA75.5-76.95004 InformatikMachine Learning (cs.LG)Artificial Intelligence (cs.AI)Artificial IntelligenceElectronic computers. Computer scienceconvolutional neural networksk-term DNFinterpretability004 Data processingOriginal ResearchFrontiers in artificial intelligence
researchProduct

Local Granger causality

2021

Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the 'local Granger causality', i.e. the profile of the information transfer at each discrete time point in Gaussian processes; in this frame Granger causality is the average of its local version. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear …

FOS: Computer and information sciencesInformation transferGaussianFOS: Physical sciencestechniques; information theory; granger causalityMachine Learning (stat.ML)Quantitative Biology - Quantitative Methods01 natural sciences010305 fluids & plasmasVector autoregressionsymbols.namesakegranger causalityGranger causalityStatistics - Machine Learning0103 physical sciencesApplied mathematicstime serie010306 general physicsQuantitative Methods (q-bio.QM)Mathematicsinformation theoryStochastic processDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksComputational Physics (physics.comp-ph)Discrete time and continuous timeAutoregressive modelFOS: Biological sciencesSettore ING-INF/06 - Bioingegneria Elettronica E InformaticasymbolsTransfer entropytechniquesPhysics - Computational Physics
researchProduct

Time Difference of Arrival Estimation from Frequency-Sliding Generalized Cross-Correlations Using Convolutional Neural Networks

2020

The interest in deep learning methods for solving traditional signal processing tasks has been steadily growing in the last years. Time delay estimation (TDE) in adverse scenarios is a challenging problem, where classical approaches based on generalized cross-correlations (GCCs) have been widely used for decades. Recently, the frequency-sliding GCC (FS-GCC) was proposed as a novel technique for TDE based on a sub-band analysis of the cross-power spectrum phase, providing a structured two-dimensional representation of the time delay information contained across different frequency bands. Inspired by deep-learning-based image denoising solutions, we propose in this paper the use of convolutio…

FOS: Computer and information sciencesSound (cs.SD)Computer sciencePhase (waves)Distributed microphones02 engineering and technologyConvolutional neural networkComputer Science - Sound030507 speech-language pathology & audiology03 medical and health sciencesAudio and Speech Processing (eess.AS)FOS: Electrical engineering electronic engineering information engineering0202 electrical engineering electronic engineering information engineeringGCCRepresentation (mathematics)Signal processingbusiness.industryI.5.4Deep learningConvolutional Neural Networks020206 networking & telecommunicationsTime delay estimationMultilaterationI.2.094A12 68T10LocalizationArtificial intelligence0305 other medical sciencebusinessAlgorithmElectrical Engineering and Systems Science - Audio and Speech ProcessingI.2.0; I.5.4ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
researchProduct

Sector identification in a set of stock return time series traded at the London Stock Exchange

2005

We compare some methods recently used in the literature to detect the existence of a certain degree of common behavior of stock returns belonging to the same economic sector. Specifically, we discuss methods based on random matrix theory and hierarchical clustering techniques. We apply these methods to a portfolio of stocks traded at the London Stock Exchange. The investigated time series are recorded both at a daily time horizon and at a 5-minute time horizon. The correlation coefficient matrix is very different at different time horizons confirming that more structured correlation coefficient matrices are observed for long time horizons. All the considered methods are able to detect econo…

FOS: Economics and businessPhysics - Physics and SocietyStatistical Finance (q-fin.ST)SYSTEMSEXPRESSION DATAQuantitative Finance - Statistical FinanceFOS: Physical sciencesFINANCIAL-MARKETSDisordered Systems and Neural Networks (cond-mat.dis-nn)Physics and Society (physics.soc-ph)Condensed Matter - Disordered Systems and Neural NetworksMATRICESNOISE
researchProduct

Orbital Rotations induced by Charges of Polarons and Defects in Doped Vanadates

2020

We explore the competiton of doped holes and defects that leads to the loss of orbital order in vanadate perovskites. In compounds such as La$_{1-{\sf x}}$Ca$_{\,\sf x}$VO$_3$ spin and orbital order result from super-exchange interactions described by an extended three-orbital degenerate Hubbard-Hund model for the vanadium $t_{2g}$ electrons. Long-range Coulomb potentials of charged Ca$^{2+}$ defects and $e$-$e$ interactions control the emergence of defect states inside the Mott gap. The quadrupolar components of the Coulomb fields of doped holes induce anisotropic orbital rotations of degenerate orbitals. These rotations modify the spin-orbital polaron clouds and compete with orbital rotat…

FOS: Physical sciences02 engineering and technologyElectronPolaron01 natural sciencesCondensed Matter - Strongly Correlated ElectronsAtomic orbital0103 physical sciencesCoulomb010306 general physicsSpin (physics)Condensed Matter - Statistical MechanicsPhysicsCondensed Matter - Materials ScienceStrongly Correlated Electrons (cond-mat.str-el)Statistical Mechanics (cond-mat.stat-mech)Condensed matter physicsMaterials Science (cond-mat.mtrl-sci)Order (ring theory)Disordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnologySuperexchangeCharge carrierCondensed Matter::Strongly Correlated ElectronsAstrophysics::Earth and Planetary Astrophysics0210 nano-technology
researchProduct