Search results for " Representation."
showing 10 items of 791 documents
Some criteria for detecting capable Lie algebras
2013
Abstract In virtue of a recent bound obtained in [P. Niroomand, F.G. Russo, A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra 39 (2011) 1293–1297], we classify all capable nilpotent Lie algebras of finite dimension possessing a derived subalgebra of dimension one. Indirectly, we find also a criterion for detecting noncapable Lie algebras. The final part contains a construction, which shows that there exist capable Lie algebras of arbitrary big corank (in the sense of Berkovich–Zhou).
Lie nilpotence of group rings
1993
Let FG be the group algebra of a group G over a field F. Denote by ∗ the natural involution, (∑fi gi -1. Let S and K denote the set of symmetric and skew symmetric and skew symmetric elements respectively with respect to this involutin. It is proved that if the characteristic of F is zero p≠2 and G has no 2-elements, then the Lie nilpotence of S or K implies the Lie nilpotence of FG.
A restriction on the schur multiplier of nilpotent lie algebras
2011
An improvement of a bound of Yankosky (2003) is presented in this paper, thanks to a restriction which has been recently obtained by the authors on the Schur multiplier M(L) of a finite dimensional nilpotent Lie algebra L. It is also described the structure of all nilpotent Lie algebras such that the bound is attained. An important role is played by the presence of a derived subalgebra of maximal dimension. This allows precision on the size of M(L). Among other results, applications to the non-abelian tensor square L ⊗ L are illustrated.
Group algebras of torsion groups and Lie nilpotence
2010
Letbe an involution of a group algebra FG induced by an involution of the group G. For char F 0 2, we classify the torsion groups G with no elements of order 2 whose Lie al- gebra of � -skew elements is nilpotent.
Irreducible Finitary Lie Algebras over Fields of Characteristic Zero
1998
Abstract A Lie subalgebraLof g l K (V) is said to befinitaryif it consists of elements of finite rank. We show that if Char K = 0, if dim K Vis infinite, and ifLacts irreducibly onV, then the derived algebra ofLis simple.
Nilpotent Lie algebras with 2-dimensional commutator ideals
2011
Abstract We classify all (finitely dimensional) nilpotent Lie k -algebras h with 2-dimensional commutator ideals h ′ , extending a known result to the case where h ′ is non-central and k is an arbitrary field. It turns out that, while the structure of h depends on the field k if h ′ is central, it is independent of k if h ′ is non-central and is uniquely determined by the dimension of h . In the case where k is algebraically or real closed, we also list all nilpotent Lie k -algebras h with 2-dimensional central commutator ideals h ′ and dim k h ⩽ 11 .
Algebras with involution with linear codimension growth
2006
AbstractWe study the ∗-varieties of associative algebras with involution over a field of characteristic zero which are generated by a finite-dimensional algebra. In this setting we give a list of algebras classifying all such ∗-varieties whose sequence of ∗-codimensions is linearly bounded. Moreover, we exhibit a finite list of algebras to be excluded from the ∗-varieties with such property. As a consequence, we find all possible linearly bounded ∗-codimension sequences.
Finite-dimensional non-associative algebras and codimension growth
2011
AbstractLet A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded.Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One…
Varieties of almost polynomial growth: classifying their subvarieties
2007
Let G be the infinite dimensional Grassmann algebra over a field F of characteristic zero and UT2 the algebra of 2 x 2 upper triangular matrices over F. The relevance of these algebras in PI-theory relies on the fact that they generate the only two varieties of almost polynomial growth, i.e., they grow exponentially but any proper subvariety grows polynomially. In this paper we completely classify, up to PI-equivalence, the associative algebras A such that A is an element of Var(G) or A is an element of Var(UT2).
Matrix algebras of polynomial codimension growth
2007
We study associative algebras with unity of polynomial codimension growth. For any fixed degree $k$ we construct associative algebras whose codimension sequence has the largest and the smallest possible polynomial growth of degree $k$. We also explicitly describe the identities and the exponential generating functions of these algebras.