Search results for " Representation."

showing 10 items of 791 documents

Some criteria for detecting capable Lie algebras

2013

Abstract In virtue of a recent bound obtained in [P. Niroomand, F.G. Russo, A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra 39 (2011) 1293–1297], we classify all capable nilpotent Lie algebras of finite dimension possessing a derived subalgebra of dimension one. Indirectly, we find also a criterion for detecting noncapable Lie algebras. The final part contains a construction, which shows that there exist capable Lie algebras of arbitrary big corank (in the sense of Berkovich–Zhou).

Discrete mathematicsPure mathematicsAlgebra and Number TheoryHeisenberg algebraNon-associative algebranilpotent Lie algebrasKilling formAffine Lie algebraGraded Lie algebraLie conformal algebraNilpotent Lie algebraSettore MAT/02 - AlgebraAdjoint representation of a Lie algebraRepresentation of a Lie groupcorankHomology of Lie algebraMathematicsJournal of Algebra
researchProduct

Lie nilpotence of group rings

1993

Let FG be the group algebra of a group G over a field F. Denote by ∗ the natural involution, (∑fi gi -1. Let S and K denote the set of symmetric and skew symmetric and skew symmetric elements respectively with respect to this involutin. It is proved that if the characteristic of F is zero p≠2 and G has no 2-elements, then the Lie nilpotence of S or K implies the Lie nilpotence of FG.

Discrete mathematicsPure mathematicsAlgebra and Number TheoryRepresentation of a Lie groupTriple systemSimple Lie groupAdjoint representationSkew-symmetric matrixWeightGroup algebraGroup ringMathematicsCommunications in Algebra
researchProduct

A restriction on the schur multiplier of nilpotent lie algebras

2011

An improvement of a bound of Yankosky (2003) is presented in this paper, thanks to a restriction which has been recently obtained by the authors on the Schur multiplier M(L) of a finite dimensional nilpotent Lie algebra L. It is also described the structure of all nilpotent Lie algebras such that the bound is attained. An important role is played by the presence of a derived subalgebra of maximal dimension. This allows precision on the size of M(L). Among other results, applications to the non-abelian tensor square L ⊗ L are illustrated.

Discrete mathematicsPure mathematicsAlgebra and Number TheorySchur multiplierSchur's lemmanilpotent Lie algebrasSchur algebrahomology of Lie algebraSchur's theoremLie conformal algebraNilpotent Lie algebraSettore MAT/02 - AlgebraAdjoint representation of a Lie algebraRepresentation of a Lie groupNilpotent groupMathematics::Representation TheoryMathematics
researchProduct

Group algebras of torsion groups and Lie nilpotence

2010

Letbe an involution of a group algebra FG induced by an involution of the group G. For char F 0 2, we classify the torsion groups G with no elements of order 2 whose Lie al- gebra of � -skew elements is nilpotent.

Discrete mathematicsPure mathematicsAlgebra and Number TheorySimple Lie groupAdjoint representationANÉIS DE GRUPOSGroup algebraRepresentation theoryGraded Lie algebraNon-abelian groupRepresentation of a Lie groupgroup algebra unitNilpotent groupMathematicsJournal of Group Theory
researchProduct

Irreducible Finitary Lie Algebras over Fields of Characteristic Zero

1998

Abstract A Lie subalgebraLof g l K (V) is said to befinitaryif it consists of elements of finite rank. We show that if Char  K  = 0, if dim K  Vis infinite, and ifLacts irreducibly onV, then the derived algebra ofLis simple.

Discrete mathematicsPure mathematicsAlgebra and Number TheorySimple Lie groupNon-associative algebraFundamental representation(gK)-moduleKilling formAffine Lie algebraMathematicsLie conformal algebraGraded Lie algebraJournal of Algebra
researchProduct

Nilpotent Lie algebras with 2-dimensional commutator ideals

2011

Abstract We classify all (finitely dimensional) nilpotent Lie k -algebras h with 2-dimensional commutator ideals h ′ , extending a known result to the case where h ′ is non-central and k is an arbitrary field. It turns out that, while the structure of h depends on the field k if h ′ is central, it is independent of k if h ′ is non-central and is uniquely determined by the dimension of h . In the case where k is algebraically or real closed, we also list all nilpotent Lie k -algebras h with 2-dimensional central commutator ideals h ′ and dim k h ⩽ 11 .

Discrete mathematicsPure mathematicsCommutatorNumerical AnalysisAlgebra and Number TheoryNilpotent Lie algebras Pairs of alternating formsNon-associative algebraCartan subalgebraKilling formCentral seriesPairs of alternating formsAdjoint representation of a Lie algebraNilpotent Lie algebrasLie algebraDiscrete Mathematics and CombinatoricsSettore MAT/03 - GeometriaGeometry and TopologyNilpotent groupMathematicsLinear Algebra and its Applications
researchProduct

Algebras with involution with linear codimension growth

2006

AbstractWe study the ∗-varieties of associative algebras with involution over a field of characteristic zero which are generated by a finite-dimensional algebra. In this setting we give a list of algebras classifying all such ∗-varieties whose sequence of ∗-codimensions is linearly bounded. Moreover, we exhibit a finite list of algebras to be excluded from the ∗-varieties with such property. As a consequence, we find all possible linearly bounded ∗-codimension sequences.

Discrete mathematicsPure mathematicsJordan algebraAlgebra and Number TheoryNon-associative algebraSubalgebraQuadratic algebra∗-CodimensionsSettore MAT/02 - AlgebraInterior algebra*-polynomial identity T*-ideal *-codimensions.∗-Polynomial identityT∗-idealDivision algebraAlgebra representationNest algebraMathematics
researchProduct

Finite-dimensional non-associative algebras and codimension growth

2011

AbstractLet A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded.Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One…

Discrete mathematicsPure mathematicsJordan algebraApplied MathematicsJordan algebraNon-associative algebraSubalgebraUniversal enveloping algebraPolynomial identityExponential growthCodimensionsPolynomial identityCodimensionsExponential growthJordan algebraQuadratic algebraAlgebra representationDivision algebraCellular algebraPOLINÔMIOSMathematicsAdvances in Applied Mathematics
researchProduct

Varieties of almost polynomial growth: classifying their subvarieties

2007

Let G be the infinite dimensional Grassmann algebra over a field F of characteristic zero and UT2 the algebra of 2 x 2 upper triangular matrices over F. The relevance of these algebras in PI-theory relies on the fact that they generate the only two varieties of almost polynomial growth, i.e., they grow exponentially but any proper subvariety grows polynomially. In this paper we completely classify, up to PI-equivalence, the associative algebras A such that A is an element of Var(G) or A is an element of Var(UT2).

Discrete mathematicsPure mathematicsJordan algebraCODIMENSION GROWTHSubvarietyGeneral MathematicsTriangular matrixUniversal enveloping algebraIDENTITIESPI-ALGEBRASAlgebra representationDivision algebraCellular algebraComposition algebraT-IDEALSMathematics
researchProduct

Matrix algebras of polynomial codimension growth

2007

We study associative algebras with unity of polynomial codimension growth. For any fixed degree $k$ we construct associative algebras whose codimension sequence has the largest and the smallest possible polynomial growth of degree $k$. We also explicitly describe the identities and the exponential generating functions of these algebras.

Discrete mathematicsPure mathematicsJordan algebraGeneral MathematicsNon-associative algebraSubalgebraUniversal enveloping algebraCodimensionMatrix polynomialQuadratic algebraSettore MAT/02 - AlgebraAlgebra representationpolynomial identity codimensions growthMathematics
researchProduct