Search results for " layers"

showing 10 items of 91 documents

Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy

2001

Indium selenide thin films have been grown on p-type gallium selenide single crystal substrates by van der Waals epitaxy. The use of two crucibles in the growth process has resulted in indium selenide films with physical properties closer to these of bulk indium selenide than those prepared by other techniques. The optical properties of the films have been studied by electroabsorption measurements. The band gap and its temperature dependence are very close to those of indium selenide single crystals. The width of the fundamental transition, even if larger than that of the pure single crystal material, decreases monotonously with temperature. Exciton peaks are not observed even at low temper…

Materials scienceBand gapExcitonIndium compounds ; III-VI semiconductors ; Semiconductor epitaxial layers ; Electroabsorption ; Excitons ; Minority carriers ; Carrier lifetimeCarrier lifetimeGeneral Physics and Astronomychemistry.chemical_elementIII-VI semiconductorschemistry.chemical_compoundIndium compounds:FÍSICA [UNESCO]SelenideThin filmMinority carriersbusiness.industrySemiconductor epitaxial layersUNESCO::FÍSICACarrier lifetimeCopper indium gallium selenide solar cellschemistryElectroabsorptionOptoelectronicsExcitonsbusinessSingle crystalIndium
researchProduct

Efficient Perovskite Light-Emitting Diodes: Effect of Composition, Morphology, and Transport Layers

2018

Organic-inorganic metal halide perovskites are emerging as novel materials for light-emitting applications due to their high color purity, band gap tunability, straightforward synthesis, and inexpensive precursors. In this work, we improve the performance of three-dimensional perovskite light-emitting diodes (PeLEDs) by tuning the emissive layer composition and thickness and by using small-molecule transport layers. Additionally, we correlate PeLED efficiencies to the perovskite structure and morphology. The results show that the PeLEDs containing perovskites with an excess of methylammonium bromide (MABr) to lead bromide (PbBr2) in a 2:1 ratio and a layer thickness of 80 nm have the highes…

Materials scienceBand gapHOL - HolstHalide02 engineering and technologyPerovskite010402 general chemistry01 natural scienceslaw.inventionTransport layerslawLight-emitting diodeSurface roughnessGeneral Materials SciencePerovskite (structure)TS - Technical Sciencesbusiness.industryStoichiometric perovskite021001 nanoscience & nanotechnology0104 chemical sciencesNano TechnologyOptoelectronicsQuantum efficiencyCrystallite0210 nano-technologybusinessLayer (electronics)High efficiencyLight-emitting diodeACS Applied Materials & Interfaces
researchProduct

Photocurrent spectroscopy in passivity studies

2018

The aim of this article is to present photocurrent spectroscopy as useful in situ technique for the physicochemical characterization of passive films and corrosion layers. The response of (both amorphous and crystalline) semiconductor/electrolyte junction under irradiation is treated and discussed in order to get information about solid-state properties such as band gap and flat band potential. The possibility to use Photocurrent Spectroscopy (PCS), in a quantitative way, to get information on the composition of corrosion layers is discussed through a semiempirical correlation between the band gap of the oxides (or hydroxides) and the difference of electronegativity of their constituents. F…

Materials scienceBand gapPassive film/electrolyte energetics02 engineering and technologyElectrolyte01 natural sciencesCorrosionElectronegativityPhotoelectrochemistryOptical band gap0103 physical sciencesSpectroscopy010302 applied physicsPhotocurrentBilayer filmsbusiness.industryCorrosion layersOxide layersAmorphous semiconductors021001 nanoscience & nanotechnologyAmorphous solidSemiconductorHydroxide layersSettore ING-IND/23 - Chimica Fisica ApplicataOptoelectronicsPassive films0210 nano-technologybusinessFlat band potential
researchProduct

Visible photothermal deflection spectroscopy using microcantilevers

2012

International audience; Photothermal deflection spectroscopy based on bi-material cantilevers combines the sensitivity of miniature sensors and the selectivity of optical spectroscopy. In this paper, we report on the photothermal response of the microcantilevers functionalized with nanometer thin organic films in the visible region. Unlike responses in the infrared regime, in the optical region, light absorption by all the cantilever constituents must be considered for extraction of the physical parameters of the organic layer. A model of photothermal deflection for the optical region has been developed for two absorbing layers consisting of a thick metal (>200 nm) and a thin organic film. …

Materials scienceCantileverADSORPTIONInfrared02 engineering and technologyDEVICE01 natural sciencesRhodamine 6Gchemistry.chemical_compoundUltraviolet visible spectroscopyOptics0103 physical sciencesMaterials ChemistrySENSORSElectrical and Electronic EngineeringThin filmSpectroscopyInstrumentation010302 applied physicsThin layersbusiness.industryFORCE MICROSCOPYMetals and AlloysPhotothermal therapyPERFORMANCE021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCANTILEVERchemistryENHANCED RAMAN-SPECTROSCOPY0210 nano-technologybusinessRHODAMINE 6G
researchProduct

Progress in Violet Light-Emitting Diodes Based on ZnO/GaN Heterojunction

2020

Progress in light-emitting diodes (LEDs) based on ZnO/GaN heterojunctions has run into several obstacles during the last twenty years. While both the energy bandgap and lattice parameter of the two semiconductors are favorable to the development of such devices, other features related to the electrical and structural properties of the GaN layer prevent an efficient radiative recombination. This work illustrates some advances made on ZnO/GaN-based LEDs, by using high-thickness GaN layers for the p-region of the device and an ad hoc device topology. Heterojunction LEDs consist of a quasicoalesced non-intentionally doped ZnO nanorod layer deposited by chemical bath deposition onto a metal&ndash

Materials scienceComputer Networks and CommunicationsBand gapgrowthlcsh:TK7800-836002 engineering and technologyfabricationElectroluminescence01 natural sciencesSettore ING-INF/01 - Elettronicaganlaw.inventionelectroluminescencelawleds0103 physical sciencesmorphologyzno/gan heterojunction ledsSpontaneous emissionElectrical and Electronic Engineeringepitaxial p-gan layers010302 applied physicsZnO nanorodbusiness.industryzno nanorodszno/gan heterostructurelcsh:Electronicsepitaxial p-GaN layerHeterojunctiondependence021001 nanoscience & nanotechnologyoptical-propertieschemical bath depositionSemiconductorHardware and ArchitectureControl and Systems EngineeringZnO/GaN heterojunction LEDSignal ProcessingznoOptoelectronicsNanorod0210 nano-technologybusinessnanorodsChemical bath depositionLight-emitting diode
researchProduct

Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness

2019

Perovskite solar cells (PSCs) are one of the main research topics of the photovoltaic community; with efficiencies now reaching up to 24%, PSCs are on the way to catching up with classical inorganic solar cells. However, PSCs have not yet reached their full potential. In fact, their efficiency is still limited by nonradiative recombination, mainly via trap-states and by losses due to the poor transport properties of the commonly used transport layers (TLs). Indeed, state-of-the-art TLs (especially if organic) suffer from rather low mobilities, typically within 10(-5) and 10(-2) cm(-2) V-1 s(-1), when compared to the high mobilities, 1-10 cm(-2) V-1 s(-1), measured for perovskites. This work…

Materials scienceEnergy Engineering and Power TechnologyRECOMBINATIONdopingConductivityperovskite solar cellsCH3NH3PBI3Materials ChemistryElectrochemistryChemical Engineering (miscellaneous)ddc:530Electrical and Electronic EngineeringHYSTERESISMaterialsCèl·lules fotoelèctriquesPerovskite (structure)business.industryPhotovoltaic systemDopingInstitut für Physik und AstronomieCharge (physics)LimitingConductivitat elèctricaHALIDE PEROVSKITEScharge transportHysteresistransport layersOptoelectronicsTIO2conductivitybusiness
researchProduct

Faceting and structural anisotropy of nanopatterned CdO(110) layers

2005

CdO(110) layers with a self-organized surface structure have been grown on (10math0) sapphire (m plane) substrates by metal-organic vapor phase epitaxy. The epitaxial relationships between layer and substrate have been determined and a crystallographic model that accounts for the CdO in-plane orientation, which results in a reduced lattice mismatch when the CdO[001] direction is perpendicular to the sapphire c axis, has been proposed. Although the measured lattice parameters indicate that the layers are almost fully relaxed, an anisotropic mosaicity is detected with symmetrical rocking curves attaining minimum values when measured along the CdO[math10] direction. The layer morphology consis…

Materials scienceGeneral Physics and AstronomySemiconductor growthEpitaxyMosaicityVapour phase epitaxial growthCadmium compound ; Semiconductor epitaxial layers ; II-VI semiconductors ; Semiconductor growth ; Vapour phase epitaxial growth ; MOCVD ; Nanopatterning ; Self-assembly ; Lattice constants ; Mosaic structure ; Surface morphologyLattice constant:FÍSICA [UNESCO]PerpendicularMetalorganic vapour phase epitaxyAnisotropyCondensed matter physicsUNESCO::FÍSICASemiconductor epitaxial layersLattice constantsNanopatterningII-VI semiconductorsSelf-assemblyFacetingCrystallographyCadmium compoundMOCVDSapphireSurface morphologyMosaic structure
researchProduct

Prussian blue@MoS2 layer composites as highly efficient cathodes for sodium- and potassium-ion batteries

2018

Prussian blue (PB) represents a simple, economical, and eco‐friendly system as cathode material for sodium‐ion batteries (SIBs). However, structural problems usually worsen its experimental performance thus motivating the search for alternative synthetic strategies and the formation of composites that compensate these deficiencies. Herein, a straightforward approach for the preparation of PB/MoS2‐based nanocomposites is presented. MoS2 provides a 2D active support for the homogeneous nucleation of porous PB nanocrystals, which feature superior surface areas than those obtained by other methodologies, giving rise to a compact PB shell covering the full flake. The nanocomposite exhibits an ex…

Materials scienceMaterials compostosPrussian blue2D composites02 engineering and technologyPotassium-ion batteries010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsMarie curieBiomaterialsElectrochemistrymedia_common.cataloged_instanceQuímica FísicaEuropean union0210 nano-technologyMoS2 layersSodium-ion batteriesHumanitiesmedia_common
researchProduct

Spray pyrolytic deposition of ZnO thin layers composed of low dimensional nanostructures

2010

Abstract ZnO nanolayers composed of fine nanostructures have been successively grown by spray pyrolytic deposition at 300  ∘ C over amorphous glass substrates. As deposited samples were analysed by scanning electron microscopy (SEM), showing a granular morphology with grain size in the limit of the microscope resolution. CL measurement shows a broad near band edge (3.4 eV) emission of ZnO in the UV region and the defect level emissions in the green region of the spectrum. The use of intermittent spray pyrolytic deposition is shown as an alternative to increase the homogeneity of the samples when temperatures near to the precursor pyrolytic decomposition is selected, long depositions times a…

Materials scienceMicroscopeThin layersScanning electron microscopeZnO nanolayersNanotechnologyPhysics and Astronomy(all)MicrostructureGrain sizeAmorphous solidlaw.inventionNanostructuresChemical engineeringlawSEMCathodoluminiscencePyrolytic carbonDeposition (law)Physics Procedia
researchProduct

Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers

2016

In the race towards two-dimensional electronic and optoelectronic devices, semiconducting transition metal dichalcogenides (TMDCs) from group VIB have been intensively studied in recent years due to the indirect to direct band-gap transition from bulk to the monolayer. However, new materials still need to be explored. For example, semiconducting TMDCs from group IVB have been predicted to have larger mobilities than their counterparts from group VIB in the monolayer limit. In this work we report the mechanical exfoliation of ZrX2 (X = S, Se) from bulk down to the monolayer and we study the dimensionality dependence of the Raman spectra in ambient conditions. We observe Raman signal from bul…

Materials scienceNanotechnology02 engineering and technology010402 general chemistrylcsh:Technology01 natural sciencesSignallcsh:Chemistrysymbols.namesakeTransition metalMonolayerGeneral Materials Sciencelcsh:QH301-705.5InstrumentationFluid Flow and Transfer ProcessesThin layerslcsh:Tbusiness.industryProcess Chemistry and TechnologyBilayertransition metal dichalcogenidesGeneral Engineering2D materialsexfoliation021001 nanoscience & nanotechnologyExfoliation jointlcsh:QC1-9990104 chemical sciencesComputer Science ApplicationsEspectroscòpia RamanSemiconductorlcsh:Biology (General)lcsh:QD1-999Semiconductorslcsh:TA1-2040Chemical physicsRaman spectroscopysymbolsAtomically-thin layerslcsh:Engineering (General). Civil engineering (General)0210 nano-technologybusinessRaman spectroscopylcsh:Physics
researchProduct