6533b830fe1ef96bd12965c0

RESEARCH PRODUCT

Progress in Violet Light-Emitting Diodes Based on ZnO/GaN Heterojunction

Eric FeltinIsodiana CrupiMauro MoscaFulvio CarusoGiuseppe LulloRoberto MacalusoD. Scire

subject

Materials scienceComputer Networks and CommunicationsBand gapgrowthlcsh:TK7800-836002 engineering and technologyfabricationElectroluminescence01 natural sciencesSettore ING-INF/01 - Elettronicaganlaw.inventionelectroluminescencelawleds0103 physical sciencesmorphologyzno/gan heterojunction ledsSpontaneous emissionElectrical and Electronic Engineeringepitaxial p-gan layers010302 applied physicsZnO nanorodbusiness.industryzno nanorodszno/gan heterostructurelcsh:Electronicsepitaxial p-GaN layerHeterojunctiondependence021001 nanoscience & nanotechnologyoptical-propertieschemical bath depositionSemiconductorHardware and ArchitectureControl and Systems EngineeringZnO/GaN heterojunction LEDSignal ProcessingznoOptoelectronicsNanorod0210 nano-technologybusinessnanorodsChemical bath depositionLight-emitting diode

description

Progress in light-emitting diodes (LEDs) based on ZnO/GaN heterojunctions has run into several obstacles during the last twenty years. While both the energy bandgap and lattice parameter of the two semiconductors are favorable to the development of such devices, other features related to the electrical and structural properties of the GaN layer prevent an efficient radiative recombination. This work illustrates some advances made on ZnO/GaN-based LEDs, by using high-thickness GaN layers for the p-region of the device and an ad hoc device topology. Heterojunction LEDs consist of a quasicoalesced non-intentionally doped ZnO nanorod layer deposited by chemical bath deposition onto a metal&ndash

https://infoscience.epfl.ch/record/286451