0000000000044804

AUTHOR

Fulvio Caruso

Warm white LEDs based on Lumogen® Red and Yellow

One of the most widespread solutions for the production of white LEDs is the frequency downconversion of a part of the light, coming from a blue source, by exciting one or more materials (typically Ce:YAG) that emit at longer wavelength [1]. In this work we report ona simple and less expensive method to fabricate warmwhite-light LEDsusingthe photoluminescence of Lumogen®, a perylene-based polymer dyecommercialized by BASF,that has already beenprovedto be a good substitute for conventi onal inorganic colour conversion [2],[3]. Standard InGaN-based blue LEDs (~ 450 nm) were fabricated on a sapphire substrate by metal organic chemical vapour deposition. Both Lumogen® Yellow, and Red dyes wered…

research product

Fabbricazione di LED bianchi tramite down-conversion di coloranti basati su perilene

A high efficiency cool white LED was obtained by generation of yellow down-conversion from a GaN/InGaN blue LED. Using photoluminescence of a perylene-based polymer dye we achieved a good substitute for conventional inorganic color conversion.

research product

HYBRID WHITE LIGHT-EMITTING DIODES: STUDY AND FABRICATION OF THIN-FILM AND NANOWIRE-BASED DEVICES

I diodi ad emissione luminosa sono dei dispositivi a semiconduttore che posseggono straordinarie proprietà fisiche di generazione della luce. Il primo LED bianco si è mosso silenziosamente dalla metà degli anni 90 fino a un punto in cui, oggi, il mercato dell’illuminazione è stato totalmente rivoluzionato. A fronte dell’industria dell’illuminazione a stato solido che richiede LED sempre più luminosi ed economici, la ricerca scientifica risponde con strutture innovative, nuovi materiali più efficienti, anche combinati con l’uso delle nanotecnologie applicate. I diodi bianchi ibridi ad emissione luminosa, ad esempio, fanno anch’essi uso di un LED blu, come in un tradizionale diodo bianco, ma …

research product

The p-Type Doping of ZnO: Mirage or Reality?

This chapter deals with a critical review on p-type doping of ZnO. In the past 15 years, ZnO has attracted considerable attention due to its unique properties, which make it a promising material for optoelectronic devices applications. However, a reliable p-type ZnO doping remains a major challenge because of self-compensation effects; thus, despite the advantages of these devices, the fabrication of ZnO-based devices is hampered by the lack of a stable p-type doping. A careful and critical analysis of the results reported in literature raises many doubts about the correctness of the doping-type assignments and, in general, the values of the electrical parameters reported. A historical surv…

research product

Frequency-Downconversion Stability of PMMA Coatings in Hybrid White Light-Emitting Diodes

We report on the properties of a poly(methyl methacrylate)-based coating used as a host for an organic dye in hybrid white light-emitting diodes. The device is composed by a pump source, which is a standard inorganic GaN/InGaN blue light-emitting diode (LED) emitting at around 450 nm, and a spin-coated conversion layer making use of Lumogen® F Yellow 083. Under prolonged irradiation, the coating exhibits significant bleaching, thus degrading the color rendering performance of the LED. We present experimental results that confirm that the local temperature rise of the operating diode does not affect the conversion layer. It is also proven that, during the test, the photostability of the orga…

research product

Stability improvement of PMMA and Lumogen® coatings for hybrid white LEDs

Hybrid white LEDs employing perylene-based dyes for the frequency down-conversion of blue light, generated by a standard inorganic source, suffer from colour rendering variations due to the degradation of the organic molecule under prolonged irradiation. To avoid such inconvenient, proper encapsulation of the dyes in resins or other polymer matrices can prevent their accelerated ageing; nevertheless, embedding polymers can also exhibit significant bleaching caused by chemico-physical agents. Among all, polymethyl methacrilate (PMMA) is one of the most used materials for the fabrication of hybrid LEDs' colour conversion coatings, therefore its stability needs to be investigated.

research product

White LED light obtained by frequency down-conversion of perylene-based dyes

research product

Resistive switching behaviour in ZnO and VO 2 memristors grown by pulsed laser deposition

The resistive switching behaviour observed in microscale memristors based on laser ablated ZnO and VO 2 is reported. A comparison between the two materials is reported against an active device size. The results show that devices up to 300 × 300 μm 2 exhibit a memristive behaviour regardless of the device size, and 100 × 100 μm 2 ZnO-based memristors have the best resistance off/on ratio.

research product

Generation of white LED light by frequency downconversion using a perylene-based dye

A high efficiency white light emitting diode (LED) was fabricated by generation of frequency down-conversion from a GaN/InGaN blue LED. In place of conventional inorganic phosphors, a perylene-based dye was used for colour conversion. The resulting hybrid structure is analysed by focusing on the visual performance of the realised LEDs employing the most relevant photometric parameters of a light source. Preparation of the organic polymer is described as well. The thermal stability of the dye was investigated and a simple structure which avoids colour degradation is proposed.

research product

Progress in Violet Light-Emitting Diodes Based on ZnO/GaN Heterojunction

Progress in light-emitting diodes (LEDs) based on ZnO/GaN heterojunctions has run into several obstacles during the last twenty years. While both the energy bandgap and lattice parameter of the two semiconductors are favorable to the development of such devices, other features related to the electrical and structural properties of the GaN layer prevent an efficient radiative recombination. This work illustrates some advances made on ZnO/GaN-based LEDs, by using high-thickness GaN layers for the p-region of the device and an ad hoc device topology. Heterojunction LEDs consist of a quasicoalesced non-intentionally doped ZnO nanorod layer deposited by chemical bath deposition onto a metal&ndash

research product

Warm white LED light by frequency down-conversion of mixed yellow and red Lumogen®

This work reports on the benefits and promising opportunities offered by white LED hybrid technology, based on a mixing perylene-based dyes in order to obtain a warm white light for frequency-down conversion. In a standard Ce:YAG-based white LED, the white light appears cold due to the weakness of red wavelength components in the emission spectrum. In order to obtain a warmer white, one possible solution is to add a red phosphor to the yellow one to move the chromatic coordinates properly, though the luminous efficiency drastically decreases due to the increased light absorption of the coating layer. It is generally believed that the low efficiency of warm white LEDs is the main issue today…

research product

Warm white LED light by frequency down- conversion of mixed perylene-based dyes

The growing demand of the solid-state lighting market for the development of sources for illumination has led to the fabrication of the first white LED in 1997, which employed a blue LED coated by a Ce:YAG phosphor to mix the down-converted yellow light with the blue one. The white light appears cold due to the weakness of red components in the emission spectrum. In order to obtain a warmer white, one possible solution is to add a red phosphor to the yellow one to move the chromatic coordinates properly, though the luminous efficiency drastically decreases due to the increased light absorption of the coating layer. It is generally believed that the low efficacy of warm white LEDs is the mai…

research product

Well-aligned hydrothermally synthesized zinc oxide nanorods on p-GaN without a seed layer

Zinc oxide nanorods have great potential for the realization of high efficiency heterostructure LEDs based on pdoped gallium nitride. In order to obtain a good confinement of the light, a well-aligned nanorod waveguiding structure is desirable. This paper reports on the fabrication of vertical zinc oxide nanorods using a solution-based growth process that does not require a seed layer. The nanorods obtained follow the crystalline growth direction of the GaN layer along the c-axis. Various results with different reagent concentrations are reported.

research product

A New Procedure for the Lightning Experiment: Mn2O7 and Ethanol

Formation of Mn2O7 and its reaction with ethanol is commonly referred to as “underwater lightnings”. Classic procedures are reviewed, along with their weak points, and physical and chemical properties of dimanganese heptaoxide are shown. A new improved approach is finally presented, safer and easier, and suited for lecturehall activities.

research product

Hybrid LEDs pave way to new lighting applications

Many analysts agree that the global lighting market is close to a real revolution: the LED revolution. One of the most widespread solutions for the production of white LEDs is the conversion of a part of the light, coming from a known source, by exciting one or more materials that emit at a longer wavelength. The result is an emission spectrum given by the superposition of the single source and the photoexcited material; the big advantage is that the phenomenon of photoluminescence replaces the further integration of other solid-state devices of different colors. The photoluminescence of a perylene-based polymer dye turned out to be a good substitute for conventional inorganic color convers…

research product

Anodized Ti-Si Alloy as Gate Oxide of Electrochemically-Fabricated Organic Field-Effect Transistors

Organic field-effect transistors were fabricated using an electrochemical route. The dielectric oxide was grown by anodization of a Ti:Si alloy, while 3,4-polyethylenedioxythiophene has been employed as a semiconducting polymer. OutputI-Vcharacteristics showed a transistor effect dependent on dielectric thickness. Fitting between I-V measurements and theoretical simulations in the triode region confirmed the presence of a conduction path through the polymer which degrades the electrical characteristics of the devices.

research product

Current Spreading Length and Injection Efficiency in ZnO/GaN-Based Light-Emitting Diodes

We report on carrier injection features in light-emitting diodes (LEDs) based on nonintentionally doped-ZnO/p-GaN heterostructures. These LEDs consist of a ZnO layer grown by chemical-bath deposition (CBD) onto a p-GaN template without using any seed layer. The ZnO layer (~1- $\mu \text{m}$ thickness) consists of a dense collection of partially coalesced ZnO nanorods, organized in wurtzite phase with marked vertical orientation, whose density depends on the concentration of the solution during the CBD process. Due to the limited conductivity of the p-GaN layer, the recombination in the n-region is strongly dependent on the spreading length of the holes, ${L}_{h}$ , coming from the p-contact…

research product