Search results for " nanostructures"

showing 10 items of 128 documents

Near-field properties of plasmonic nanostructures with high aspect ratio

2014

International audience; Using the Green's dyad technique based on cuboidal meshing, we compute the electromagnetic field scattered by metal nanorods with high aspect ratio. We investigate the effect of the meshing shape on the numerical simulations. We observe that discretizing the object with cells with aspect ratios similar to the object's aspect ratio improves the computations, without degrading the convergency. We also compare our numerical simulations to finite element method and discuss further possible improvements.

Electromagnetic field[PHYS]Physics [physics]RadiationMaterials science[ PHYS ] Physics [physics]DiscretizationCondensed Matter - Mesoscale and Nanoscale PhysicsComputationFOS: Physical sciencesNear and far fieldComputational Physics (physics.comp-ph)Condensed Matter PhysicsAspect ratio (image)Finite element methodComputational physicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)NanorodElectrical and Electronic EngineeringPlasmonic nanostructuresPhysics - Computational Physics
researchProduct

Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide

2015

DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thi…

ElectrophoresisMaterials scienceNanostructureSilicon dioxideta221educationClinical BiochemistryImmobilized Nucleic AcidsNanotechnology02 engineering and technologyDNA nanostructuresSubstrate (electronics)Microscopy Atomic Force01 natural sciencesBiochemistryAnalytical Chemistrychemistry.chemical_compoundHoneycombNanotechnologyDNA origamiDNA nanotechnologynanomanipulationElectrical measurementsSulfhydryl CompoundsElectrodesta218dielectrophoresista214ta114Physics010401 analytical chemistryElectric ConductivityDNAEquipment DesignDielectrophoresis021001 nanoscience & nanotechnologySilicon Dioxide0104 chemical sciencesNanostructuresChemistryNanolithographychemistryElectrical engineeringelectrical propertiesnanofabricationGold0210 nano-technologyBiotechnologyELECTROPHORESIS
researchProduct

Photoelectrocatalyzed degradation of a pesticides mixture solution (chlorfenvinphos and bromacil) by WO3 nanosheets

2019

[EN] A photoelectrocatalyst consisting of WO3 nanosheets or nanorods has been synthesized by electrochemical anodization under hydrodynamic conditions, and has been used for the degradation of two toxic pesticides: chlorfenvinphos and bromacil. Nanostructures have been characterized by FESEM and Raman spectroscopy. Photoelectrochemical degradation tests have been carried out both for individual pesticide solutions and for a mixture solution, and the concentration evolution with time has been followed by UV¿Vis spectrophotometry. For individual pesticides, pseudo-first order kinetic coefficients of 0.402 h¿1 and 0.324 h¿1 have been obtained for chlorfenvinphos and bromacil, respectively, whi…

Environmental Engineering010504 meteorology & atmospheric sciencesPhotoelectrochemistryElectrolyte010501 environmental sciences01 natural sciencesINGENIERIA QUIMICAsymbols.namesakechemistry.chemical_compoundPhotoelectrochemistryBromacilSpectrophotometrymedicineEnvironmental ChemistryWater treatmentPesticidesWaste Management and Disposal0105 earth and related environmental sciencesNanoestructuresmedicine.diagnostic_testChlorfenvinphosPollutionWO3 nanostructuresElectroquímicachemistryChemical engineeringsymbolsPesticide degradationDegradation (geology)Raman spectroscopy
researchProduct

Visible-light photoelectrodegradation of diuron on WO3 nanostructures

2018

[EN] The degradation of pesticide diuron has been explored by photoelectrocatalysis (PEC) under visible light illumination using two different WO3 nanostructures, obtained by anodization of tungsten. The highest degradation efficiency (73%) was obtained for WO3 nanosheets synthesized in the presence of small amounts of hydrogen peroxide (0.05 M). For that nanostructure, the kinetic coefficient for diuron degradation was 133% higher than that for the other nanostructure (anodized in the presence of fluoride anions). These results have been explained by taking into account the different architecture and dimensions of the two WO3 nanostructures under study.

Environmental EngineeringMaterials scienceNanostructurechemistry.chemical_element02 engineering and technology010501 environmental sciencesManagement Monitoring Policy and LawTungsten01 natural sciencesINGENIERIA QUIMICAchemistry.chemical_compoundPesticidesHydrogen peroxideWaste Management and Disposal0105 earth and related environmental sciencesNanoestructuresAnodizingGeneral Medicine021001 nanoscience & nanotechnologyWO3 nanostructures AnodizationElectroquímicachemistryChemical engineeringDiuronKinetic coefficientDegradation (geology)Photoelectrocatalysis0210 nano-technologyFluorideVisible spectrum
researchProduct

Formation of lead by reduction of electrodeposited PbO2: comparison between bulk films and nanowires fabrication

2012

Metallic lead was deposited, both in form of bulk films and nanowire array within pores of anodic alumina membranes, following a new two-step procedure, consisting in anodic electrodeposition of α-PbO2, followed by its reduction to metallic lead. This method allows to overcome drawbacks of the “direct” electrodeposition of lead from aqueous solution, consisting, essentially, in the formation of dendritic deposits. Here, we report the comparison between results obtained in the two cases and discuss the kinetic of oxide reduction both for films and nanowires. Deposit morphology and structure are also discussed. We have found that reduction of α-PbO2 films proceeds always at high speed and uni…

FabricationMaterials scienceAqueous solutionMetallurgyOxideNanowireCondensed Matter PhysicsElectrochemistryAnodeMetalchemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicatachemistryChemical engineeringvisual_artElectrochemistryvisual_art.visual_art_mediumGeneral Materials ScienceCrystallitelead oxide lead nanostructures film electrodepositionElectrical and Electronic Engineering
researchProduct

Growth of two-dimensional Au patches in graphene pores: A density-functional study

2017

Inspired by recent studies of various two-dimensional (2D) metals such as Au, Fe and Ag, we study the growth of two-dimensional gold patches in graphene pores by density-functional theory. We find that at room temperature gold atoms diffuse readily on top of both graphene and two-dimensional gold with energy barriers less than $0.5$ eV. Furthermore, gold atoms move without barriers from the top of graphene to its edge and from the top of 2D gold to its edge. The energy barriers are absent even at the interface of 2D gold and graphene, so that the gold atoms move effortlessly across the interface. We hope our demonstration for the propensity of diffusing gold atoms to grow 2D gold patches in…

FabricationMaterials scienceGeneral Computer ScienceFOS: Physical sciencesGeneral Physics and AstronomyNanotechnology02 engineering and technology01 natural scienceslaw.inventiontwo-dimensional metalsgraphene poresgold nanostructureslawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesGeneral Materials Science010306 general physicsCondensed Matter - Materials Scienceta114Condensed Matter - Mesoscale and Nanoscale PhysicsGrapheneMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologyComputational MathematicsMechanics of MaterialsDensity functional theory0210 nano-technologydensity-functional modelingGraphene nanoribbonsComputational Materials Science
researchProduct

One-step large-scale deposition of salt-free DNA origami nanostructures

2015

AbstractDNA origami nanostructures have tremendous potential to serve as versatile platforms in self-assembly -based nanofabrication and in highly parallel nanoscale patterning. However, uniform deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer. In addition, currently available deposition techniques are suitable merely for small scales. In this article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis can be …

FabricationMaterials scienceNanostructureta221educationNanotechnologySubstrate (electronics)DNA nanostructuresArticleDeposition (phase transition)DNA origamiDNA nanotechnologyBiochipNanoscopic scaleMultidisciplinaryta114PhysicsDNAself-assembly113 Computer and information sciencesMaterials scienceNanostructuresChemistryspray-coatingNanolithographySaltsDNA origamiDNA origamisBiotechnology
researchProduct

Anodic Alumina Membranes: From Electrochemical Growth to Use as Template for Fabrication of Nanostructured Electrodes

2022

The great success of anodic alumina membranes is due to their morphological features coupled to both thermal and chemical stability. The electrochemical fabrication allows accurate control of the porous structure: in fact, the membrane morphological characteristics (pore length, pore diameter and cell density) can be controlled by adjusting the anodizing parameters (bath, temperature, voltage and time). This article deals with both the fabrication and use of anodic alumina membranes. In particular, we will show the specific role of the addition of aluminum ions to phosphoric acid-based anodizing solution in modifying the morphology of anodic alumina membranes. Anodic alumina membranes were …

Fluid Flow and Transfer ProcessesTechnologynanotechnologyQH301-705.5TPhysicsQC1-999Process Chemistry and TechnologyGeneral EngineeringtemplateEngineering (General). Civil engineering (General)Computer Science ApplicationsChemistrySettore ING-IND/23 - Chimica Fisica ApplicataAlumina membranes Aluminum anodizing Nanostructures Nanotechnology Nanotubes Nanowires PdCo alloy Porous anodic alumina Templatealumina membranesaluminum anodizingnanostructuresporous anodic alumina; alumina membranes; aluminum anodizing; nanotechnology; template; nanostructures; nanowires; nanotubes; PdCo alloyGeneral Materials ScienceTA1-2040Biology (General)porous anodic aluminaQD1-999Instrumentation
researchProduct

Multiexciton complex from extrinsic centers in AlGaAs epilayers on Ge and Si substrates

2013

The multiexciton properties of extrinsic centers from AlGaAs layers on Ge and Si substrates are addressed. The two photon cascade is found both in steady state and in time resolved experiments. Polarization analysis of the photoluminescence provides clearcut attribution to neutral biexciton complexes. Our findings demonstrate the prospect of exploiting extrinsic centers for generating entangled photon pairs on a Si based device. © 2013 AIP Publishing LLC.

GaAs Molecular Beam Epitaxy quantum nanostructures photoluminescenceMaterials sciencePhotoluminescencePhotonbusiness.industryQuantum dotsGeneral Physics and AstronomySemiconductorPolarization (waves)Gallium arsenidechemistry.chemical_compoundSemiconductorchemistryQuantum dotOptoelectronicsbusinessBiexcitonSingle photonsMolecular beam epitaxy
researchProduct

Impact of gadolinium on the structure and magnetic properties of nanocrystalline powders of iron oxides produced by the extraction-pyrolytic method

2020

The work has been done in frame of the TransFerr project. It has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 778070. This research was also supported by Latvian Research Council project lzp-2018/1-0214. A.I.P. appreciates support from the Estonian Research Council grant (PUT PRG619).

Gadolinium impactMaterials scienceiron oxidesValeric acidGadoliniumIron oxidechemistry.chemical_element02 engineering and technologyThermal treatmentCoercivitymagnetization010402 general chemistryValerateExtraction-pyrolitic methodIron oxidesMagnetizationlcsh:Technology7. Clean energy01 natural sciencesArticlechemistry.chemical_compoundnanostructures:NATURAL SCIENCES:Physics [Research Subject Categories]extraction–pyrolitic methodGeneral Materials Sciencecoercivitylcsh:Microscopylcsh:QC120-168.85chemistry.chemical_classificationlcsh:QH201-278.5lcsh:TExtraction (chemistry)gadolinium impact021001 nanoscience & nanotechnologyNanocrystalline materialNanostructures0104 chemical sciencesiron oxides ; nanostructures ; gadolinium impact ; extraction–pyrolitic method ; magnetization ; coercivitychemistrylcsh:TA1-2040Magnetic nanoparticleslcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)0210 nano-technologylcsh:TK1-9971Nuclear chemistry
researchProduct