Search results for "Acyl-CoA"

showing 10 items of 42 documents

Phosphorylation of peroxisome proliferator-activated receptor α in rat Fao cells and stimulation by ciprofibrate

1999

The basic mechanism(s) by which peroxisome proliferators activate peroxisome proliferator-activated receptors (PPARs) is (are) not yet fully understood. Given the diversity of peroxisome proliferators, several hypotheses of activation have been proposed. Among them is the notion that peroxisome proliferators could activate PPARs by changing their phosphorylation status. In fact, it is well known that several members of the nuclear hormone receptor superfamily are regulated by phosphorylation. In this report, we show that the rat Fao hepatic-derived cell line, known to respond to peroxisome proliferators, exhibited a high content of PPARalpha. Alkaline phosphatase treatment of Fao cell lysat…

Peroxisome proliferator-activated receptor gammaPhosphataseReceptors Cytoplasmic and NuclearPeroxisome proliferator-activated receptorBiologyMicrobodiesBiochemistryCell LineClofibric AcidmedicineAnimalsEnzyme InhibitorsPhosphorylationPharmacologychemistry.chemical_classificationFibric Acidsfood and beveragesPeroxisomePhosphoric Monoester HydrolasesRatsGene Expression RegulationBiochemistryNuclear receptorchemistryPhosphorylationPeroxisome Proliferatorslipids (amino acids peptides and proteins)Acyl-CoA OxidasePeroxisome proliferator-activated receptor alphaCiprofibrateOxidoreductasesTranscription Factorsmedicine.drugBiochemical Pharmacology
researchProduct

The analysis of modified peroxisome proliferator responsive elements of the peroxisomal bifunctional enzyme in transfected HepG2 cells reveals two re…

1995

AbstractPeroxisome proliferators (PPs) are non-genotoxic carcinogens in rodents. They can induce the expression of numerous genes via the heterodimerization of two members of the steroid hormone receptor superfamily, called the peroxisome proliferator-activated receptor (PPAR) and the 9-cis retinoic acid receptor (RXR). Many of the PP responsive genes possess a peroxisome proliferator response element (PPRE) formed by two TGACCT-related motifs. The bifunctional enzyme (HD) PPRE contains 3 such motifs, creating DR1 and DR2 sequences. PPAR and RXR regulate transcription via the DR1 element while DR2 modulates the expression of the gene via auxiliary factors in HepG2 cells.

Peroxisome proliferator-activated receptor gammaReceptors Retinoic AcidSteroid hormone receptorMolecular Sequence DataResponse elementBiophysicsReceptors Cytoplasmic and NuclearPeroxisome proliferator-activated receptorchemical and pharmacologic phenomenaIn Vitro TechniquesRegulatory Sequences Nucleic AcidRetinoid X receptorBiologyPeroxisomal Bifunctional EnzymeTransfectionMicrobodiesBiochemistryGene Expression Regulation EnzymologicTranscriptional activationPeroxisomal Bifunctional EnzymeMultienzyme ComplexesStructural BiologyPeroxisome proliferator response element9-cis Retinoic acid receptor alphaTumor Cells CulturedGeneticsHumansRNA MessengerIsomerasesEnoyl-CoA HydrataseMolecular Biologychemistry.chemical_classificationBinding SitesBase Sequence3-Hydroxyacyl CoA DehydrogenasesPeroxisome proliferator-activated receptorCell BiologyDNA-Binding ProteinsRetinoic acid receptorRetinoid X ReceptorsLiverOligodeoxyribonucleotidesBiochemistrychemistryRat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenaseEnzyme InductionPeroxisome proliferator-activated receptor alphaTranscription FactorsFEBS Letters
researchProduct

Argan oil prevents down-regulation induced by endotoxin on liver fatty acid oxidation and gluconeogenesis and on peroxisome proliferator-activated re…

2015

In patients with sepsis, liver metabolism and its capacity to provide other organs with energetic substrates are impaired. This and many other pathophysiological changes seen in human patients are reproduced in mice injected with purified endotoxin (lipopolysaccharide, LPS). In the present study, down-regulation of genes involved in hepatic fatty acid oxidation (FAOx) and gluconeogenesis in mice exposed to LPS was challenged by nutritional intervention with Argan oil. Mice given a standard chow supplemented or not with either 6% (w/w) Argan oil (AO) or 6% (w/w) olive oil (OO) prior to exposure to LPS were explored for liver gene expressions assessed by mRNA transcript levels and/or enzyme a…

Peroxisome proliferator-activated receptor gammamedicine.medical_specialtyOO olive oilResearch paper[SDV]Life Sciences [q-bio]Peroxisome proliferator-activated receptorBiologyBiochemistryNuclear receptor 30lcsh:BiochemistryEstrogen-related receptorEstrogen-related receptor alphaInternal medicineACADS acyl CoA dehydrogenase short-chainACADL acyl CoA dehydrogenase long-chainmedicinePGC-1α peroxisome proliferator-activated receptor γ coactivator-1αlcsh:QD415-436ReceptorBeta oxidationHNF-4α hepatic nuclear factor-4αchemistry.chemical_classificationACADM acyl CoA dehydrogenase medium-chainPPARα peroxisome proliferator-activated receptor αERRα estrogen related receptor α[ SDV ] Life Sciences [q-bio]PEPCK phospoenolpyruvate carboxykinaseGluconeogenesisBeta-oxidationGlut4 glucose transporter 4[SDV] Life Sciences [q-bio]G6PH glucose-6-phosphataseEndocrinologyGlut2 glucose transporter 2chemistryNuclear receptorArgan oilAO Argan oilNuclear receptorACOX1 acyl-CoA oxidase 1CoactivatorLPS lipopolysaccharidePeroxisome proliferator-activated receptor alpha
researchProduct

Transcriptional and post-transcriptional analysis of peroxisomal protein encoding genes from rat treated with an hypolipemic agent, ciprofibrate

1995

The treatment of rats with ciprofibrate, a potent peroxisome proliferator, led to increased levels of the peroxisomal acyl-CoA oxidase (ACO) mRNA. How ciprofibrate functions to elevate ACO mRNA is not known. To help determine the mechanism of ciprofibrate action, in vitro transcription assays were performed. It was determined that ciprofibrate was responsible for a 3.5-fold stimulation of the rate of ACO transcription within 24 hr of ingestion. It was also observed that the transcription rate stimulation following a 2-week ciprofibrate treatment of Wistar rats was maintained following 4 weeks of ciprofibrate withdrawal. Re-introduction of the drug after the 4-week pause resulted in greater …

Pharmacologychemistry.chemical_classificationmedicine.medical_specialtyOxidase testPeroxisome proliferator-activated receptorStimulationPeroxisomeBiologyBiochemistryEndocrinologychemistryMechanism of actionInternal medicineGene expressionmedicineAcyl-CoA oxidaseCiprofibratemedicine.symptommedicine.drugBiochemical Pharmacology
researchProduct

Peroxisomal and mitochondrial status of two murine oligodendrocytic cell lines (158N, 158JP): potential models for the study of peroxisomal disorders…

2009

International audience; In some neurodegenerative disorders (leukodystrophies) characterized by myelin alterations, the defect of peroxisomal functions on myelin-producing cells (oligodendrocytes) are poorly understood. The development of in vitro models is fundamental to understanding the physiopathogenesis of these diseases. We characterized two immortalized murine oligodendrocyte cell lines: a normal (158N) and a jimpy (158JP) cell line mutated for the proteolipid protein PLP/DM20. Fluorescence microscopy, flow cytometry, and western blotting analysis allow to identify major myelin proteins (PLP colocalizing with mitochondria; myelin basic protein), oligodendrocyte (CNPase and myelin oli…

Proteolipid protein 1BiochemistryMiceMyelinMESH : PhenylbutyratesperoxisomeIsomerasesMESH : Myelin Basic ProteinsEnoyl-CoA HydrataseCell Line TransformedUltrasonographybiologyMESH : Gene Expression RegulationMESH : Myelin Proteolipid Protein3-Hydroxyacyl CoA DehydrogenasesMESH : Myelin-Associated GlycoproteinMESH : Cell Line TransformedPeroxisomeMESH : Multienzyme ComplexesMESH : OligodendrogliaMESH : Enoyl-CoA HydrataseCatalaseFlow CytometryMESH : 3-Hydroxyacyl CoA DehydrogenasesPhenylbutyratesmitochondriaMyelin-Associated GlycoproteinOligodendrogliamyelinMESH : Antineoplastic Agentsmedicine.anatomical_structureMESH : Microscopy Electron TransmissionBiochemistryACOX1MESH : MitochondriaMESH : Acyl-CoA Oxidase2'3'-Cyclic-Nucleotide PhosphodiesterasesMESH : IsomerasesOxidation-ReductionMyelin ProteinsMESH : Flow CytometryAntineoplastic AgentsPeroxisomal Bifunctional EnzymeStatistics NonparametricMyelin oligodendrocyte glycoproteinCellular and Molecular NeuroscienceMicroscopy Electron TransmissionMultienzyme ComplexesMESH : CatalaseMESH : MicePeroxisomesmedicineAnimalsMESH : ATP-Binding Cassette TransportersMyelin Proteolipid ProteinMESH : Statistics Nonparametric[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH : Oxidation-ReductionMyelin Basic Proteinmurine oligodendrocytesMESH : 2'3'-Cyclic-Nucleotide PhosphodiesterasesPeroxisomal transportOligodendrocyteMyelin basic proteinGene Expression Regulationbiology.proteinATP-Binding Cassette TransportersMyelin-Oligodendrocyte GlycoproteinAcyl-CoA OxidaseMESH : AnimalsMESH : Peroxisomes
researchProduct

Peroxisome proliferators and peroxisome proliferator activated receptors (PPARs) as regulators of lipid metabolism.

1997

Peroxisome proliferation (PP) in mammalian cells, first described 30 years ago, represents a fascinating field of modern research. Major improvements made in its understanding were obtained through basic advances that have opened up new areas in cell biology, biochemistry and genetics. A decade after the first report on PP, a new metabolic pathway (peroxisomal beta-oxidation) and its inducibility by peroxisome proliferators were discovered. More recently, a new type of nuclear receptor, the peroxisome proliferator-activated receptor (PPAR), has been described. The first PPAR was discovered in 1990. Since then, many other PPARs have been characterized. This original class of nuclear receptor…

Transcriptional ActivationPeroxisome ProliferationPeroxisome proliferator-activated receptorReceptors Cytoplasmic and NuclearBiologyLigandsBiochemistryMicrobodiesGene Expression Regulation EnzymologicMicrosomesAnimalsHumansReceptorHypolipidemic Agentschemistry.chemical_classificationFatty AcidsLipid metabolismGeneral MedicinePeroxisomeLipid MetabolismCell biologyMitochondriaBiochemistrychemistryNuclear receptorLiverlipids (amino acids peptides and proteins)Peroxisome proliferator-activated receptor alphaAcyl-CoA OxidaseSignal transductionOxidoreductasesOxidation-ReductionSignal TransductionTranscription FactorsBiochimie
researchProduct

Studies on Regulation of the Peroxisomal β-Oxidation at the 3-Ketothiolase Step

2002

The peroxisomal 3-oxoacyl-CoA thiolase (thiolase) is the last enzyme involved in the β-oxidation of fatty acids. The enzyme cleaves long chain fatty acyl-CoA to generate acetyl-CoA and shortened acyl-CoA. The enzyme is nuclear encoded, synthesized in the cytoplasm and transported into peroxisomes. The thiolase B gene is inducible by the peroxisome proliferator compounds, like other genes involved in β-oxidation of fatty acids in peroxisomes.

chemistry.chemical_classificationEnzymeBiochemistryPeroxisome proliferatorChemistryThiolaseCytoplasmPeroxisomeLong chainGene3-ketoacyl-CoA thiolase
researchProduct

Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene

2007

Abstract Human acyl-CoA oxidase 1 (ACOX1) is a rate-limiting enzyme in peroxisomal fatty acids β-oxidation and its deficiency is associated with a lethal, autosomal recessive disease, called pseudoneonatal-adrenoleukodystrophy. Two mRNA variants, transcribed from a single gene encode ACOX1a or ACOX1b isoforms, respectively. Recently, a mutation in a splice site has been reported [H. Rosewich, H.R. Waterham, R.J. Wanders, S. Ferdinandusse, M. Henneke, D. Hunneman, J. Gartner, Pitfall in metabolic screening in a patient with fatal peroxisomal β-oxidation defect, Neuropediatrics 37 (2006) 95–98.], which results in the defective peroxisomal fatty acids β-oxidation. Here, we show that these mRNA…

chemistry.chemical_classificationGene isoformOxidase testBiophysicsCell BiologyBiologyPeroxisomeBiochemistryIsozymeMolecular biologyArticleEnzyme ActivationIsoenzymesMolecular WeightEnzymechemistryBiochemistryLiverEnzyme StabilityAcyl-CoA oxidaseACOX1HumansHeterologous expressionAcyl-CoA OxidaseMolecular Biology
researchProduct

Evidence of oxidative stress in very long chain fatty acid--treated oligodendrocytes and potentialization of ROS production using RNA interference-di…

2011

X-linked adrenoleukodystrophy (X-ALD) and pseudo neonatal adrenoleukodystrophy (P-NALD) are neurodegenerative demyelinating diseases resulting from the functional loss of the peroxisomal ATP-binding cassette transporter D (ABCD1) and from single peroxisomal enzyme deficiency (Acyl-CoA oxidase1: ACOX1), respectively. As these proteins are involved in the catabolism of very long chain fatty acids (VLCFA: C24:0, C26:0), X-ALD and P-NALD patients are characterized by the accumulation of VLCFA in plasma and tissues. Since peroxisomes are involved in the metabolism of reactive oxygen species (ROS) and nitrogen species (RNS), we examined the impact of VLCFA on the oxidative status of 158N murine o…

congenital hereditary and neonatal diseases and abnormalitiesendocrine systemendocrine system diseasesVery long chain fatty acidBlotting Westernmedicine.disease_causeReal-Time Polymerase Chain ReactionTransfectionATP Binding Cassette Transporter Subfamily D Member 1Gas Chromatography-Mass SpectrometrySuperoxide dismutaseLipid peroxidationchemistry.chemical_compoundMicemedicinePeroxisomesAnimalsAdrenoleukodystrophyCells Culturedchemistry.chemical_classificationReactive oxygen speciesbiologyReverse Transcriptase Polymerase Chain ReactionGeneral NeuroscienceFatty Acidsnutritional and metabolic diseasesPeroxisomemedicine.diseaseFlow CytometryOligodendrogliaOxidative StressBiochemistrychemistryGene Knockdown Techniquesbiology.proteinACOX1AdrenoleukodystrophyATP-Binding Cassette TransportersRNA InterferenceAcyl-CoA OxidaseReactive Oxygen SpeciesOxidation-ReductionOxidative stressNeuroscience
researchProduct

Modulation of peroxisomes abundance by argan oil and lipopolysaccharides in acyl-CoA oxidase 1-deficient fibroblasts

2013

Pseudo-neonatal adrenoleukodystrophy (P-NALD) is a neurodegenerative disorder caused by acyl-CoA oxidase 1 (ACOX1) deficiency with subsequent impairment of peroxisomal fatty acid β-oxidation, accumulation of very long chain fatty acids (VLCFAs) and strong reduction in peroxisome abundance. Increase in peroxisome number has been previously suggested to improve peroxisomal disorders, and in this perspective, the present work was aimed at exploring whether modulation of peroxisomes abundance could be achieved in P-NALD fibroblasts. Here we showed that treatment with the natural Argan oil induced peroxisome proliferation in P-NALD fibroblasts. This induction was independent on activations of bo…

food.ingredientChemistryArgan oilPeroxisome ProliferationPeroxisomemedicine.diseaseCell biologyfoodPeroxisomal disordermedicineAcyl-CoA oxidaseACOX1AdrenoleukodystrophyPeroxisome proliferator-activated receptor alphaHealth
researchProduct