Search results for "Artificial neural network"

showing 10 items of 694 documents

Interaction in Spoken Word Recognition Models: Feedback Helps

2018

Human perception, cognition, and action requires fast integration of bottom-up signals with top-down knowledge and context. A key theoretical perspective in cognitive science is the interactive activation hypothesis: forward and backward flow in bidirectionally connected neural networks allows humans and other biological systems to approximate optimal integration of bottom-up and top-down information under real-world constraints. An alternative view is that online feedback is neither necessary nor helpful; purely feed forward alternatives can be constructed for any feedback system, and online feedback could not improve processing and would preclude veridical perception. In the domain of spo…

Speech perceptionmedia_common.quotation_subjectSpeech recognitionlcsh:BF1-990Context (language use)speech perception050105 experimental psychologyPsycholinguistics03 medical and health sciences0302 clinical medicinePerceptionspoken word recognition0501 psychology and cognitive sciencesGeneral PsychologypsycholinguisticsBayesian modelsmedia_commonTRACE (psycholinguistics)Computational modelArtificial neural network05 social sciencesFeed forwardlcsh:PsychologySspoken word recognitioncomputational modelssimulationsPsychology030217 neurology & neurosurgeryFrontiers in Psychology
researchProduct

FPGA implementation of Spiking Neural Networks

2012

Abstract Spiking Neural Networks (SNN) have optimal characteristics for hardware implementation. They can communicate among neurons using spikes, which in terms of logic resources, means a single bit, reducing the logic occupation in a device. Additionally, SNN are similar in performance compared to other neural Artificial Neural Network (ANN) architectures such as Multilayer Perceptron, and others. SNN are very similar to those found in the biological neural system, having weights and delays as adjustable parameters. This work describes the chosen models for the implemented SNN: Spike Response Model (SRM) and temporal coding is used. FPGA implementation using VHDL language is also describe…

Spiking neural networkPhysical neural networkQuantitative Biology::Neurons and CognitionArtificial neural networkbusiness.industryTime delay neural networkComputer scienceMultilayer perceptronComputer Science::Neural and Evolutionary ComputationArtificial intelligencebusinessField-programmable gate arrayHardware_LOGICDESIGNIFAC Proceedings Volumes
researchProduct

Using neural networks to obtain indirect information about the state variables in an alcoholic fermentation process

2020

This work provides a manual design space exploration regarding the structure, type, and inputs of a multilayer neural network (NN) to obtain indirect information about the state variables in the alcoholic fermentation process. The main benefit of our application is to help experts reduce the time needed for making the relevant measurements and to increase the lifecycles of sensors in bioreactors. The novelty of this research is the flexibility of the developed application, the use of a great number of variables, and the comparative presentation of the results obtained with different NNs (feedback vs. feed-forward) and different learning algorithms (Back-Propagation vs. Levenberg&ndash

State variableComputer scienceDesign space explorationBioengineering02 engineering and technologyEthanol fermentationFermentation processlcsh:Chemical technology01 natural scienceslcsh:ChemistryControl theoryFermentation process; Neural network; Prediction applicationChemical Engineering (miscellaneous)Process controllcsh:TP1-1185Layer (object-oriented design)Flexibility (engineering)Artificial neural networkProcess Chemistry and Technology010401 analytical chemistryProcess (computing)021001 nanoscience & nanotechnologyNeural network0104 chemical scienceslcsh:QD1-999Prediction application0210 nano-technology
researchProduct

Descriptor-type Kalman Filter and TLS EXIN Speed Estimate for Sensorless Control of a Linear Induction Motor.

2014

This paper proposes a speed observer for linear induction motors (LIMs), which is composed of two parts: 1) a linear Kalman filter (KF) for the online estimation of the inductor currents and induced part flux linkage components; and 2) a speed estimator based on the total least squares (TLS) EXIN neuron. The TLS estimator receives as inputs the state variables, estimated by the KF, and provides as output the LIM linear speed, which is fed back to the KF and the control system. The KF is based on the classic space-vector model of the rotating induction machine. The end effects of the LIMs have been considered an uncertainty treated by the KF. The TLS EXIN neuron has been used to compute, in …

State variableEngineeringObserver (quantum physics)neural networks (NNs)linear induction motor controlLinear Induction Motor (LIM) Kalman Filter Total Least-Squares Neural Networks.Industrial and Manufacturing EngineeringSettore ING-INF/04 - AutomaticaKalman filter (KF)Control theorylinear induction motor (LIM)state estimationElectrical and Electronic EngineeringTotal least squaresAlpha beta filterArtificial neural networkbusiness.industryEstimatorKalman filterLinear motorFlux linkagetotal least squares (TLS)Control and Systems EngineeringLinear induction motorbusinessInduction motor
researchProduct

Adaptive sparse representation of continuous input for tsetlin machines based on stochastic searching on the line

2021

This paper introduces a novel approach to representing continuous inputs in Tsetlin Machines (TMs). Instead of using one Tsetlin Automaton (TA) for every unique threshold found when Booleanizing continuous input, we employ two Stochastic Searching on the Line (SSL) automata to learn discriminative lower and upper bounds. The two resulting Boolean features are adapted to the rest of the clause by equipping each clause with its own team of SSLs, which update the bounds during the learning process. Two standard TAs finally decide whether to include the resulting features as part of the clause. In this way, only four automata altogether represent one continuous feature (instead of potentially h…

Stochastic Searching on the Line automatonBoosting (machine learning)decision support systemTK7800-8360Computer Networks and CommunicationsComputer scienceDiscriminative modelFeature (machine learning)Electrical and Electronic EngineeringArtificial neural networkrule-based learninginterpretable machine learninginterpretable AISparse approximationAutomatonRandom forestSupport vector machineVDP::Teknologi: 500Tsetlin MachineXAIHardware and ArchitectureControl and Systems EngineeringSignal ProcessingElectronicsTsetlin automataAlgorithm
researchProduct

Are Neural Networks Imitations of Mind?

2015

Artificial neural networks are often understood as a good way to imitate mind through the web structure of neurons in brain, but the very high complexity of human brain prevents to consider neural networks as good models for human mind;anyway neural networks are good devices for computation in parallel. The difference between feed-forward and feedback neural networks is introduced; the Hopfield network and the multi-layers Perceptron are discussed. In a very weak isomorphism (not similitude) between brain and neural networks, an artificial form of short term memory and of acknowledgement, in Elman neural networks, is proposed.

Structure (mathematical logic)Artificial neural networkQuantitative Biology::Neurons and CognitionArtificial neural networkComputer sciencebusiness.industryComputationComputer Science::Neural and Evolutionary ComputationAcknowledgementShort-term memoryRecurrent networkBrainFeed-forward networkSettore M-FIL/02 - Logica E Filosofia Della ScienzaPerceptroncomputer.software_genreMindSimilitudeHopfield networkArtificial intelligenceData miningbusinesscomputer
researchProduct

Contributions Regarding the Utilization of Neural Networks in SME's Management

2014

Due to the fact that there isnt a clear definition of the terms neural network" and "neuronal network" [1,2], the current paper aims to establish it by a range of comparative research. With the help of some charts, based on the structure of some SMEs (Small and Medium Enterprises), the parts that define the structure of the neuron will be compared with the general structure of an organization, in order to reproduce the neuron in the structuring level of an organization and give a meaning to the term of "organizational neuron. Sometimes it is necessary to take managerial decisions under uncertainty and / or risk, so any method that gives forecasting information to the manager is welcome [3,4…

Structure (mathematical logic)EngineeringKnowledge managementArtificial neural networkbusiness.industryGeneral MedicineStructuringComparative researchArtificial neuronBiological neural networkSmall and medium-sized enterprisesArtificial intelligenceMeaning (existential)businessApplied Mechanics and Materials
researchProduct

Employing artificial neural networks to find reaction coordinates and pathways for self-assembly

2021

Capturing the autonomous self-assembly of molecular building blocks in computer simulations is a persistent challenge, requiring to model complex interactions and to access long time scales. Advanced sampling methods allow to bridge these time scales but typically require to construct accurate low-dimensional representations of the transition pathways. In this work, we demonstrate for the self-assembly of two single-stranded DNA fragments into a ring-like structure how autoencoder architectures based on unsupervised neural networks can be employed to reliably expose transition pathways and to provide a suitable low-dimensional representation. The assembly occurs as a two-step process throug…

Structure (mathematical logic)Theoretical computer scienceArtificial neural networkMarkov chainExploitComputer scienceProcess (computing)Construct (python library)Representation (mathematics)Autoencoder
researchProduct

Machine learning for a combined electroencephalographic anesthesia index to detect awareness under anesthesia

2020

Spontaneous electroencephalogram (EEG) and auditory evoked potentials (AEP) have been suggested to monitor the level of consciousness during anesthesia. As both signals reflect different neuronal pathways, a combination of parameters from both signals may provide broader information about the brain status during anesthesia. Appropriate parameter selection and combination to a single index is crucial to take advantage of this potential. The field of machine learning offers algorithms for both parameter selection and combination. In this study, several established machine learning approaches including a method for the selection of suitable signal parameters and classification algorithms are a…

Support Vector MachinePhysiologyComputer scienceElectroencephalographycomputer.software_genreField (computer science)Machine Learning0302 clinical medicineLevel of consciousnessAnesthesiology030202 anesthesiologyMedicine and Health SciencesAnesthesiamedia_commonClinical NeurophysiologyAnesthesiology MonitoringBrain MappingMultidisciplinaryArtificial neural networkmedicine.diagnostic_testPharmaceuticsApplied MathematicsSimulation and ModelingQUnconsciousnessRElectroencephalographyNeuronal pathwayddc:ElectrophysiologyBioassays and Physiological AnalysisBrain ElectrophysiologyAnesthesiaPhysical SciencesEvoked Potentials AuditoryMedicinemedicine.symptomAlgorithmsAnesthetics IntravenousResearch ArticleComputer and Information SciencesConsciousnessImaging TechniquesCognitive NeuroscienceSciencemedia_common.quotation_subjectNeurophysiologyNeuroimagingAnesthesia GeneralResearch and Analysis MethodsBayesian inferenceMachine learningMachine Learning Algorithms03 medical and health sciencesConsciousness MonitorsDrug TherapyArtificial IntelligenceMonitoring IntraoperativeSupport Vector MachinesmedicineHumansMonitoring Physiologicbusiness.industryElectrophysiological TechniquesBiology and Life SciencesSupport vector machineStatistical classificationCognitive ScienceNeural Networks ComputerArtificial intelligenceClinical MedicineConsciousnessbusinesscomputerMathematics030217 neurology & neurosurgeryNeurosciencePLOS ONE
researchProduct

Prediction of banana quality indices from color features using support vector regression

2015

Banana undergoes significant quality indices and color transformations during shelf-life process, which in turn affect important chemical and physical characteristics for the organoleptic quality of banana. A computer vision system was implemented in order to evaluate color of banana in RGB, L*a*b* and HSV color spaces, and changes in color features of banana during shelf-life were employed for the quantitative prediction of quality indices. The radial basis function (RBF) was applied as the kernel function of support vector regression (SVR) and the color features, in different color spaces, were selected as the inputs of the model, being determined total soluble solids, pH, titratable acid…

Support Vector Machinemedia_common.quotation_subjectOrganolepticColorHSL and HSVColor space01 natural sciencesAnalytical Chemistry0404 agricultural biotechnologyArtificial IntelligenceQuality (business)Radial basis functionmedia_commonArtificial neural networkChemistrybusiness.industry010401 analytical chemistryMusaPattern recognitionPigments Biological04 agricultural and veterinary sciences040401 food science0104 chemical sciencesSupport vector machineRGB color modelNeural Networks ComputerArtificial intelligencebusinessForecastingTalanta
researchProduct