Search results for "Ayer"

showing 10 items of 2767 documents

High temperature oxidation of Mg2(Si-Sn)

2016

Abstract High temperature oxidation of Mg 2 Si 1- x Sn x alloys ( x  = 0.1 ⿿ 0.6) has been investigated. The oxidation rate was slow for temperatures below 430 °C. In the temperature range between 430⿿500 °C all the alloys exhibited breakaway oxidation. The onset temperature of the breakaway region in general decreased with increasing level of Sn in the alloy. The breakaway behavior is explained by a combination of the formation of a non-protective MgO layer and the formation of Sn-rich liquid at the interface between the oxide and Mg depleted Mg 2 Sn.

010302 applied physicsMaterials scienceGeneral Chemical EngineeringAlloyMetallurgyOxide02 engineering and technologyGeneral Chemistryengineering.materialAtmospheric temperature range021001 nanoscience & nanotechnology01 natural sciencesCorrosionchemistry.chemical_compoundchemistry0103 physical sciencesengineeringGeneral Materials Science0210 nano-technologyLayer (electronics)Oxidation rateCorrosion Science
researchProduct

Magneto-optical properties of two-layer film systems based on Fe and Cr

2020

The results of the investigation of two-layer Fe/Cr systems using the magneto-optical Kerr effect (MOKE) are presented in this paper. The samples were obtained by thermal evaporation in a vacuum with a thickness of individual layers from 2 nm to 50 nm. It was found that the presence of the Cr layer significantly affects the values of the coercivity and the Kerr angle. At a substrate temperature of 450 K, the value of the coercivity is almost half that of the same sample obtained at room temperature of the substrate. In addition, the influence of the order of deposition of layers, as well as the effect of a thin gold protective layer on the parameters measured by the Kerr method, is shown. …

010302 applied physicsMaterials scienceKerr effectSpintronicsbusiness.industryTwo layerStatistical and Nonlinear Physics02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMagneto optical0103 physical sciencesOptoelectronicsThin film0210 nano-technologybusinessInternational Journal of Modern Physics B
researchProduct

Morphological and magnetic analysis of Fe nanostructures on W(110) by using scanning tunneling microscopy and Lorentz microscopy

2016

Abstract We investigated morphological features and magnetic properties of epitaxial Fe nanostructures (films, stripes and nanoparticles) on a W(110) surface with monoatomic steps preferentially along the direction. The nanostructures were prepared in ultra-high vacuum by using electron-beam evaporation and subsequent annealing at different temperatures. Scanning tunneling microscopy measurements in-situ revealed elongated Fe nanostructures with aspect ratios of up to . The observable shape and orientation (along or perpendicular to the monoatomic steps of the substrate) of the nanostructures depended substantially on the preparation parameters. By capping the system with 7 monolayers of Pt…

010302 applied physicsMaterials scienceNanostructureCondensed matter physicsAnnealing (metallurgy)General EngineeringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy01 natural scienceslaw.inventionMagnetic fieldCondensed Matter::Materials ScienceCrystallographyMagnetizationlaw0103 physical sciencesMonolayerSingle domainScanning tunneling microscope0210 nano-technologyJapanese Journal of Applied Physics
researchProduct

Molecular dynamics simulations of nanometric metallic multilayers: Reactivity of the Ni-Al system

2011

The reactivity of a layered Ni-Al-Ni system is studied by means of molecular dynamics simulations, using an embedded-atom method type potential. The system, made of an fcc-Al layer embedded in fcc-Ni, is initially thermalized at the fixed temperature of 600 K. The early interdiffusion of Ni and Al at interfaces is followed by the massive diffusion of Ni in the Al layer and by the spontaneous phase formation of $B2$-NiAl. The solid-state reaction is associated with a rapid system heating, which further enhances the diffusion processes. For longer times, the system may partly lose some its $B2$-NiAl microstructure in favor of the formation of $L{1}_{2}$-${\mathrm{Ni}}_{3}\mathrm{Al}$. This st…

010302 applied physicsMaterials scienceNanotechnology02 engineering and technologyType (model theory)021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesElectronic Optical and Magnetic MaterialsMetalMolecular dynamicsChemical physicsvisual_artPhase (matter)0103 physical sciencesvisual_art.visual_art_medium[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Reactivity (chemistry)PACS: 64.70.Nd 02.70.Ns 68.35.bdDiffusion (business)0210 nano-technologyLayer (electronics)
researchProduct

Study of the P3HT/PCBM interface using photoemission yield spectroscopy

2016

Photogeneration efficiency and charge carrier extraction from active layer are the parameters that determine the efficiency of organic photovoltaics (OPVs). Devices made of organic materials often consist of thin (up to 100nm) layers. At this thickness different interface effects become more pronounced. The electron affinity and ionization energy shift can affect the charge carrier transport across metal-organic interface which can affect the performance of the entire device. In the case of multilayer OPVs, energy level compatibility at the organic-organic interface is as important. Photoemission yield spectroscopy was used for organic-organic interface study by ionization energy measuremen…

010302 applied physicsMaterials scienceOrganic solar cellbusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesActive layerElectron affinityIonization0103 physical sciencesOptoelectronicsCharge carrierThin filmIonization energy0210 nano-technologybusinessSpectroscopySPIE Proceedings
researchProduct

Evaluation and Comparison of Novel Precursors for Atomic Layer Deposition of Nb2O5 Thin Films

2012

Atomic layer deposition (ALD) of Nb2O5 thin films was studied using three novel precursors, namely, tBuN═Nb(NEt2)3, tBuN═Nb(NMeEt)3, and tamylN═Nb(OtBu)3. These precursors are liquid at room temperature, present good volatility, and are reactive toward both water and ozone as the oxygen sources. The deposition temperature was varied from 150 to 375 °C. ALD-type saturative growth modes were confirmed at 275 °C for tBuN═Nb(NEt2)3 and tBuN═Nb(NMeEt)3 together with both oxygen sources. Constant growth rate was observed between a temperature regions of 150 and 325 °C. By contrast, amylN═Nb(OtBu)3 exhibited limited thermal stability and thus a saturative growth mode was not achieved. All films we…

010302 applied physicsMaterials scienceta114General Chemical EngineeringAnalytical chemistrychemistry.chemical_element02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnology01 natural sciencesOxygenAmorphous solidElastic recoil detectionAtomic layer depositionchemistry0103 physical sciencesMaterials ChemistryThermal stabilityThin film0210 nano-technologyta116Volatility (chemistry)High-κ dielectricChemistry of Materials
researchProduct

Atomic Layer Deposition of Osmium

2011

Growth of osmium thin films and nanoparticles by atomic layer deposition is described. The Os thin films were successfully grown between 325 and 375 °C using osmocene and molecular oxygen as precursors. The films consisted of only Os metal as osmium oxides were not detected in X-ray diffraction measurements. Also the impurity contents of oxygen, carbon, and hydrogen were less than 1 at % each at all deposition temperatures. The long nucleation delay of the Os process facilitates either Os nanoparticle or thin film deposition. However, after the nucleation delay of about 350 cycles the film growth proceeded linearly with increasing number of deposition cycles. Also conformal growth of Os thi…

010302 applied physicsMaterials scienceta114General Chemical EngineeringInorganic chemistryAnalytical chemistryNucleationchemistry.chemical_element02 engineering and technologyGeneral ChemistryChemical vapor deposition021001 nanoscience & nanotechnologyOsmocene01 natural scienceschemistry.chemical_compoundAtomic layer depositionCarbon filmchemistry0103 physical sciencesMaterials ChemistryDeposition (phase transition)OsmiumThin film0210 nano-technologyta116Chemistry of Materials
researchProduct

Atomic Layer Deposition of LiF Thin Films from Lithd, Mg(thd)2, and TiF4 Precursors

2013

Lithium fluoride is an interesting material because of its low refractive index and large band gap. Previously LiF thin films have been deposited mostly by physical methods. In this study a new way of depositing thin films of LiF using atomic layer deposition (ALD) is presented. Mg(thd)2, TiF4 and Lithd were used as precursors, and they produced crystalline LiF at a temperature range of 300–350 °C. The films were studied by UV–vis spectrometry, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), atomic force microscopy (AFM), time-of-flight elastic recoil detection analysis (ToF-ERDA), and energy dispersive X-ray spectroscopy (EDX). In addition, film adhesion was t…

010302 applied physicsMaterials scienceta214ta114Band gapGeneral Chemical EngineeringAnalytical chemistryLithium fluoride02 engineering and technologyGeneral ChemistryAtmospheric temperature range021001 nanoscience & nanotechnology01 natural sciencesElastic recoil detectionchemistry.chemical_compoundAtomic layer depositionchemistryImpurity0103 physical sciencesMaterials ChemistryThin film0210 nano-technologySpectroscopyChemistry of Materials
researchProduct

Stopping cross-section measurements of 4He in TiN1.1O0.27

2000

Abstract The stopping cross-section for 4He projectiles in TiNx compounds has been measured using the backscattering method. A multi-compound marker layer deposited between the test film and the substrate was used to obtain the stopping cross-section at several energies with one energy of the incident beam. Two RBS spectra at definite tilt angles of the sample are taken for each beam energy. The assistance of computer codes to synthesize RBS spectra is very useful to obtain the pertinent information from the displacements of the peaks of the marker layers. Stopping cross-section values are obtained with an estimated uncertainty of about 6%.

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceProjectile02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesSpectral lineCross section (physics)Tilt (optics)0103 physical sciencesAtomic physics0210 nano-technologyInstrumentationLayer (electronics)Beam energyEnergy (signal processing)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Investigation of ZrO[sub 2]–Gd[sub 2]O[sub 3] Based High-k Materials as Capacitor Dielectrics

2010

Atomic layer deposition (ALD) of ZrO 2 ―Gd 2 O 3 nanolaminates and mixtures was investigated for the preparation of a high permittivity dielectric material. Variation in the relative number of ALD cycles for constituent oxides allowed one to obtain films with controlled composition. Pure ZrO 2 films possessed monoclinic and higher permittivity cubic or tetragonal phases, whereas the inclusion of Gd 2 O 3 resulted in the disappearance of the monoclinic phase. Changes in phase composition were accompanied with increased permittivity of mixtures and laminates with low Gd content. Further increase in the lower permittivity Gd 2 O 3 content above 3.4 cat. % resulted in the decreased permittivity…

010302 applied physicsPermittivityMaterials scienceRenewable Energy Sustainability and the EnvironmentAnalytical chemistryEquivalent oxide thickness02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAtomic layer depositionElectric field0103 physical sciencesMaterials ChemistryElectrochemistry0210 nano-technologyCurrent densityLeakage (electronics)High-κ dielectricJournal of The Electrochemical Society
researchProduct