Search results for "Branes"

showing 10 items of 525 documents

Staining of immunoblots by immunochromatography.

1994

Staining and LabelingChemistryImmunoblottingBiophysicsCollodionMembranes ArtificialCell BiologyAntibodies ViralBiochemistryMolecular biologyStainingPotexvirusPlants ToxicCapsidTobaccoChromatography Thin LayerMolecular BiologyAnalytical biochemistry
researchProduct

Lipid and phase specificity of α-toxin from S. aureus

2013

AbstractThe pore forming toxin Hla (α-toxin) from Staphylococcus aureus is an important pathogenic factor of the bacterium S. aureus and also a model system for the process of membrane-induced protein oligomerisation and pore formation. It has been shown that binding to lipid membranes at neutral or basic pH requires the presence of a phosphocholine-headgroup. Thus, sphingomyelin and phosphatidylcholine may serve as interaction partners in cellular membranes. Based on earlier studies it has been suggested that rafts of sphingomyelin are particularly efficient in toxin binding. In this study we compared the oligomerisation of Hla on liposomes of various lipid compositions in order to identif…

Staphylococcus aureusPore formationLiquid ordered phaseBacterial ToxinsLipid BilayersBiophysicsBiologyBiochemistryPhase Transitionchemistry.chemical_compoundHemolysin ProteinsMembrane LipidsMembrane MicrodomainsPhosphatidylcholineBinding siteLipid raftUnilamellar LiposomesPore-forming toxinLiposomeArtificial membranesBinding SitesCell MembraneOligomerisationCell BiologyS. aureusSphingomyelinsMembraneBiochemistrychemistryMicroscopy FluorescenceMutationPhosphatidylcholineslipids (amino acids peptides and proteins)Protein MultimerizationToxinSphingomyelinBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Effect of Cholesterol on Electrostatics in Lipid−Protein Films of a Pulmonary Surfactant

2010

We report the changes in the electrical properties of the lipid-protein film of pulmonary surfactant produced by excess cholesterol. Pulmonary surfactant (PS) is a complex lipid-protein mixture that forms a molecular film at the interface of the lung's epithelia. The defined molecular arrangement of the lipids and proteins of the surfactant film gives rise to the locally highly variable electrical surface potential of the interface, which becomes considerably altered in the presence of cholesterol. With frequency modulation Kelvin probe force microscopy (FM-KPFM) and force measurements, complemented by theoretical analysis, we showed that excess cholesterol significantly changes the electri…

Static ElectricityAnalytical chemistryNanoparticleMicroscopy Atomic ForcePulmonary surfactantMolecular filmStatic electricityElectrochemistryAnimalsGeneral Materials ScienceFiberSpectroscopyKelvin probe force microscopeChemistryProteinsMembranes ArtificialPulmonary SurfactantsSurfaces and InterfacesLipid MetabolismCondensed Matter PhysicsElectrostaticsLipidsCholesterolMembraneBiophysicsCattleLangmuir
researchProduct

Noise driven translocation of short polymers in crowded solutions

2008

In this work we study the noise induced effects on the dynamics of short polymers crossing a potential barrier, in the presence of a metastable state. An improved version of the Rouse model for a flexible polymer has been adopted to mimic the molecular dynamics by taking into account both the interactions between adjacent monomers and introducing a Lennard-Jones potential between all beads. A bending recoil torque has also been included in our model. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion with a Gaussian uncorrelated noise. We find a nonmonotonic behaviour of the mean first passage time and the most probable tran…

Statistics and ProbabilityPhysicschemistry.chemical_classificationQuantitative Biology::BiomoleculesStatistical Mechanics (cond-mat.stat-mech)Thermal fluctuationsEquations of motionFOS: Physical sciencesdynamics (theory) mechanical properties (DNA RNA membranes bio-polymers) (theory) Brownian MotionStatistical and Nonlinear PhysicsContext (language use)PolymerNoise (electronics)Condensed Matter::Soft Condensed MatterMolecular dynamicschemistryChemical physicsRectangular potential barrierStatistics Probability and UncertaintyFirst-hitting-time modelCondensed Matter - Statistical Mechanics
researchProduct

Chemically driven phase separation in black lipid membranes and its coupling to membrane functions

1992

Abstract We analysed the single-channel current fluctuations of gramicidin in bimolecular lipid membranes in order to demonstrate (i) the influence of protein binding to the lateral organisation of a mixed membrane, and (ii) how this couples to the function of the ionophore. Examples of phase separations induced by synthetic polyelectrolytes, as models for peripheral membrane proteins, and specific ligand-receptor interactions are presented and discussed in view of the important lateral order-function relationship in biomembranes.

StereochemistryChemistryPeripheral membrane proteinLipid microdomainMetals and AlloysSynthetic membraneBiological membraneSurfaces and InterfacesPolar membraneSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOrientations of Proteins in Membranes databaseMembraneMaterials ChemistryBiophysicsMembrane biophysicsThin Solid Films
researchProduct

Electrostatic Contribution to the Surface Pressure of Charged Monolayers Containing Polyphosphoinositides

2008

Structural and functional studies of lateral heterogeneity in biological membranes have underlined the importance of membrane organization in biological function. Most inquiries have focused on steric determinants of membrane organization, such as headgroup size and acyl-chain saturation. This manuscript reports a combination of theory and experiment that shows significant electrostatic contributions to surface pressures in monolayers of phospholipids where the charge spacing is smaller than the Bjerrum length. For molecules with steric cross sections typical of phospholipids in the cell membrane (approximately 50 A(2)), only polyphosphoinositides achieve this threshold. The most abundant s…

Steric effectsModels MolecularMembrane FluiditySurface PropertiesLipid BilayersStatic ElectricityBiophysics010402 general chemistryBjerrum length01 natural sciences03 medical and health sciencesPhosphatidylinositol PhosphatesMonolayerMembrane fluidityPressureComputer SimulationLipid bilayer030304 developmental biology0303 health sciencesChromatographyMembranesHydrogen bondChemistryBiological membrane0104 chemical sciencesModels ChemicalChemical physicsIonic strength
researchProduct

Investigation of Temperature-Induced Phase Transitions in DOPC and DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Force Microscopy

2004

Under physiological conditions, multicomponent biological membranes undergo structural changes which help define how the membrane functions. An understanding of biomembrane structure-function relations can be based on knowledge of the physical and chemical properties of pure phospholipid bilayers. Here, we have investigated phase transitions in dipalmitoylphosphatidylcholine (DPPC) and dioleoylphosphatidylcholine (DOPC) bilayers. We demonstrated the existence of several phase transitions in DPPC and DOPC mica-supported bilayers by both atomic force microscopy imaging and force measurements. Supported DPPC bilayers show a broad L(beta)-L(alpha) transition. In addition to the main transition …

Steric effectsPhase transition12-DipalmitoylphosphatidylcholineBiophysicsPhospholipid02 engineering and technologyMicroscopy Atomic Force010402 general chemistry01 natural sciencesPhase TransitionQuantitative Biology::Subcellular Processeschemistry.chemical_compoundTransition TemperaturePhospholipidsPhysics::Biological PhysicsMembranesBilayerTransition temperaturedigestive oral and skin physiologyBiological membrane021001 nanoscience & nanotechnology0104 chemical sciencesCondensed Matter::Soft Condensed MatterCrystallographyMembranechemistryChemical physicsDipalmitoylphosphatidylcholineAluminum Silicateslipids (amino acids peptides and proteins)0210 nano-technologyBiophysical Journal
researchProduct

Interaction between biotin lipids and streptavidin in monolayers: formation of oriented two-dimensional protein domains induced by surface recognitio…

1989

Highly specific ligand-receptor interactions generally characterize surface recognition reactions. Such processes can be simulated by streptavidin-biotin-specific binding. Biotin lipids have thus been synthesized, and their interaction with streptavidin (or avidin) at the air-water interface was directly shown by measurement of surface pressure isotherms and fluorescence microscopy. These proteins interact with the biotin lipid monolayer via specific binding or nonspecific adsorption. Both phenomena were clearly distinguished by use of the inactivated form of streptavidin. The binding of fluorescein-labeled streptavidin to monolayers was also directly observed by fluorescence microscopy. Th…

StreptavidinChemical PhenomenaSurface PropertiesProtein domainBiotinBiochemistrychemistry.chemical_compoundBiotinBacterial ProteinsMonolayerFluorescence microscopebiologyChemistryChemistry PhysicalPhosphatidylethanolaminestechnology industry and agricultureMembranes ArtificialHydrogen-Ion ConcentrationAvidinFluorescenceLipidsSpectrometry FluorescenceSolubilityBiotinylationbiology.proteinBiophysicsSpectrophotometry UltravioletStreptavidinAvidinBiochemistry
researchProduct

Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces.

1993

The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both in subphase water molecules and in the alkyl chains of the lipid surface monolayer, was utilized to determine the interface structure on the molecular length scale. In all cases studied, the protein forms monomolecular layers underneath the interface with thickness values of approximately 40 A. A systematic dependence of the structural properties of such self-assembled SA monolayers on the surface chemistr…

StreptavidinSurface PropertiesAnalytical chemistrySynthetic membraneBiophysicsBiophysical Phenomenachemistry.chemical_compoundAdsorptionBacterial ProteinsMonolayerMoietyMoleculeAlkylchemistry.chemical_classificationNeutronsAqueous solutionChemistryPhosphatidylethanolaminesProteinsWaterMembranes ArtificialLipidsCrystallographyMicroscopy ElectronCholesterolMicroscopy FluorescenceModels ChemicalAdsorptionStreptavidinDimyristoylphosphatidylcholineResearch ArticleBiophysical journal
researchProduct

Functionalized lipid tubules as tools for helical crystallization of proteins

1997

The development of functional supramolecular devices built by self-assembly of elementary molecules and with bioactive properties arouses considerable interest in the field of nanotechnology and new materials. We report here the formation of a new class of lipid tubules exhibiting both properties of molecular recognition and crystal formation for the protein streptavidin. These lipid tubules, made of biotin-containing dioctadecylamine molecules, are straight hollow cylinders with a constant diameter of 27 nm and variable length up to several micrometers. They are unilamellar with an inner diameter of about 16 nm, as shown by cryoelectron microscopy. Streptavidin binds to the biotinylated tu…

StreptavidinliposomesSupramolecular chemistryTWO-DIMENSIONAL CRYSTALSMEMBRANESCatalysisACETYLCHOLINE-RECEPTORVESICLESlipidschemistry.chemical_compoundTOXIN B-SUBUNITMolecular recognition2-DIMENSIONAL CRYSTALLIZATIONELECTRON-MICROSCOPYLiposomeChemistryVesicleOrganic Chemistrytechnology industry and agricultureCHOLERA-TOXINGeneral ChemistryCrystallographyMembranehelical structuresRESOLUTIONBiotinylationSelf-assemblyself-assembly tubulesMICROSTRUCTURESChemistry – A European Journal
researchProduct