Search results for "CELLS"

showing 10 items of 7920 documents

Skin-derived mesenchymal stem cells as quantum dot vehicles to tumors

2017

Dominyka Dapkute,1,2 Simona Steponkiene,1 Danute Bulotiene,1 Liga Saulite,3 Una Riekstina,3 Ricardas Rotomskis1,4 1Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania; 2Institute of Biosciences, Vilnius University, Vilnius, Lithuania; 3Faculty of Medicine, University of Latvia, Riga, Latvia; 4Biophotonics Group of Laser Research Center, Faculty of Physics, Vilnius University, Vilnius, Lithuania Purpose: Cell-mediated delivery of nanoparticles is emerging as a new method of cancer diagnostics and treatment. Due to their inherent regenerative properties, adult mesenchymal stem cells (MSCs) are naturally attracted to wounds and sites of inflammation, as well as tumors.…

0301 basic medicineBiophysicsPharmaceutical ScienceConnective tissueBioengineeringBreast Neoplasmsquantum dotsMice SCIDFlow cytometryBiomaterialsCell therapy03 medical and health sciencesIn vivoCell MovementInternational Journal of NanomedicineCell Line TumorDrug DiscoverymedicineAnimalsHumansViability assayParticle SizeCytotoxicityCell ShapeSkinOriginal Researchmesenchymal stem cellsMigration Assaymedicine.diagnostic_testCell DeathChemistryOrganic ChemistryMesenchymal stem cellGeneral MedicineDynamic Light ScatteringEndocytosis030104 developmental biologymedicine.anatomical_structureimmunodeficient miceCancer researchNanoparticlesFemaletumor tropismtumor-specific deliveryInternational Journal of Nanomedicine
researchProduct

Molecular analysis of differential antiproliferative activity of resveratrol, epsilon viniferin and labruscol on melanoma cells and normal dermal cel…

2018

IF 3.778 (2016); International audience; Very recently, we have produced new resveratrol derived compounds, especially labruscol by culture of elicited grapevine cell suspensions (Vitis labrusca L.). This new polyphenolic oligomer could function as cancer chemopreventive agent in similar manner of resveratrol. In this study, we have determined the efficiency of resveratrol, ε-viniferin and the labruscol on human melanoma cell with or without metastatic phenotype. Our results show a differential activity of the three compounds where the resveratrol remains the polyphenolic compound with the most effective action compared to other oligomers. These three compounds block cell cycle of melanoma …

0301 basic medicineBioproductsProgrammed cell deathCellCyclin AResveratrolepsilon-ViniferinCell cycleToxicologyS Phase03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell Line Tumor[SDV.IDA]Life Sciences [q-bio]/Food engineeringCDC2 Protein KinaseCyclin EStilbenesmedicineCytotoxic T cellAnticarcinogenic AgentsHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCyclin D1VitisMelanoma cellsMelanomaCyclinBenzofuransCell ProliferationSkinKinaseCyclin-Dependent Kinase 2food and beveragesPolyphenolsGeneral MedicineCell cycleFibroblasts3. Good health030104 developmental biologymedicine.anatomical_structurechemistryResveratrol030220 oncology & carcinogenesis[SDV.TOX]Life Sciences [q-bio]/ToxicologyCancer researchFood ScienceFood and chemical toxicology : an international journal published for the British Industrial Biological Research Association
researchProduct

Mast cells contribute to autoimmune diabetes by releasing interleukin-6 and failing to acquire a tolerogenic IL-10+ phenotype

2017

Mast cells (MCs) are innate immune cells that exert positive and negative immune modulatory functions capable to enhance or limit the intensity and/or duration of adaptive immune responses. Although MCs are crucial to regulate T cell immunity, their action in the pathogenesis of autoimmune diseases is still debated. Here we demonstrate that MCs play a crucial role in T1D pathogenesis so that their selective depletion in conditional MC knockout NOD mice protects them from the disease. MCs of diabetic NOD mice are overly inflammatory and secrete large amounts of IL-6 that favors differentiation of IL-17-secreting T cells at the site of autoimmunity. Moreover, while MCs of control mice acquire…

0301 basic medicineBlood GlucoseAutoimmune diabeteAutoimmunityNodmedicine.disease_causeT-Lymphocytes RegulatoryAutoimmunityImmune toleranceSettore MED/13 - EndocrinologiaMiceAutoimmune diabetes0302 clinical medicineMice Inbred NODImmunology and AllergyNOD miceMice KnockoutInterleukin-17Forkhead Transcription FactorsFlow CytometryImmunohistochemistryhumanitiesInterleukin-10Interleukin 10Tumor necrosis factor alphaImmunologySettore MED/50 - Scienze Tecniche Mediche ApplicateMice TransgenicLaser Capture MicrodissectionReal-Time Polymerase Chain Reactionbehavioral disciplines and activities03 medical and health sciencesIslets of LangerhansImmune systemChymasesmedicineAnimalsInflammationInnate immune systembusiness.industryInterleukin-6Immune toleranceSettore MED/46 - Scienze Tecniche di Medicina di LaboratorioAutoimmune diabetes; Immune tolerance; Interleukin-10; Interleukin-6; Mast cells030104 developmental biologyDiabetes Mellitus Type 1ImmunologyMast cellsTh17 CellsMast cells; Autoimmune diabetes; Interleukin-6; Immune tolerance; Interleukin-10business030215 immunology
researchProduct

Decreased consumption of branched-chain amino acids improves metabolic health

2016

Protein-restricted (PR), high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs) is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino…

0301 basic medicineBlood GlucoseMalemedicine.medical_specialtyAdipose Tissue WhiteAdipose tissueBiologybranched-chain amino acids (BCAAs)General Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciences0302 clinical medicineStress PhysiologicalInternal medicineInsulin-Secreting CellsGlucose IntolerancemedicineAnimalsHumansbiochemistryObesitylcsh:QH301-705.5Metabolic health2. Zero hungerchemistry.chemical_classificationgenetics and molecular biology (all)GluconeogenesisOrgan SizeMiddle Agedmedicine.diseaseObesityAmino acidFibroblast Growth FactorsMice Inbred C57BLProtein-restricted (PR)030104 developmental biologyEndocrinologyPharmacological interventionslcsh:Biology (General)BiochemistrychemistryGluconeogenesisDiet qualitybiochemistry; genetics and molecular biology (all)Dietary Proteins030217 neurology & neurosurgeryAmino Acids Branched-Chain
researchProduct

The Involvement of Toll-like Receptor-2 in Arterial Thrombus Formation.

2018

There is emerging evidence for the participation of toll-like receptor-2 (TLR2) expressed on platelets and endothelial cells in the setting of arterial thrombosis. In isolated human platelets, TLR2/1 activation was demonstrated to induce platelet activation, secretion, aggregation, adhesion to collagen coatings and the formation of platelet-leukocyte conjugates, whereas murine platelets were less sensitive to TLR2/1 stimulation. Also, endothelial cells can be activated by stimulation with TLR2 agonists, resulting in increased expression of adhesion molecules, synthesis of inflammatory mediators and Weibel-Palade body exocytosis. Endothelial TLR2 signalling promotes atherosclerotic lesion de…

0301 basic medicineBlood Platelets030204 cardiovascular system & hematology03 medical and health sciences0302 clinical medicineVon Willebrand factormedicineAnimalsHumansPlateletPlatelet activationInflammationToll-like receptorbiologyCell adhesion moleculeChemistryEndothelial CellsCarotid Artery ThrombosisThrombosisHematologyArteriesmedicine.diseasePlatelet ActivationThrombosisPlaque AtheroscleroticToll-Like Receptor 2TLR2030104 developmental biologyCancer researchbiology.proteinHamostaseologie
researchProduct

Bone regeneration in the stem cell era: safe play for the patient?

2017

The past decade has seen outstanding scientific progress in the field of stem cell (SC) research and clinical application. SCs are convenient both technically and biologically: they are easy to find and to culture and they can differentiate in virtually all tissues and even in whole organs. Induced pluripotent stem cells (iPSs) are a type of pluripotent SC generated in vitro directly from mature cells through the introduction of key transcription factors. The use of iPSs, however tantalizing, poses serious safety concerns because of their genomic instability. Recently, it has been suggested that the main mechanism of SC action relies on paracrine signals. Therefore, the secretome would be p…

0301 basic medicineBone Regenerationbusiness.industryMechanism (biology)Cellular differentiationInduced Pluripotent Stem CellsCell DifferentiationParacrine signalsGeneral MedicineRisk Assessment03 medical and health sciences030104 developmental biologyInnovative TherapiesRheumatologyRisk analysis (engineering)HumansMedicinePatient SafetyStem cellCell differentiation Growth factor Induced pluripotent stem cell Risk Safety Transformation TumourigenesisInduced pluripotent stem cellbusinessBone regenerationStem Cell Transplantation
researchProduct

Morphogenetically-Active Barrier Membrane for Guided Bone Regeneration, Based on Amorphous Polyphosphate

2017

We describe a novel regeneratively-active barrier membrane which consists of a durable electrospun poly(ε-caprolactone) (PCL) net covered with a morphogenetically-active biohybrid material composed of collagen and inorganic polyphosphate (polyP). The patch-like fibrous collagen structures are decorated with small amorphous polyP nanoparticles (50 nm) formed by precipitation of this energy-rich and enzyme-degradable (alkaline phosphatase) polymer in the presence of calcium ions. The fabricated PCL-polyP/collagen hybrid mats are characterized by advantageous biomechanical properties, such as enhanced flexibility and stretchability with almost unaltered tensile strength of the PCL net. The pol…

0301 basic medicineBone Regenerationcollagen-inducingBarrier membranePolymersPharmaceutical Science02 engineering and technologyMatrix (biology)chemistry.chemical_compoundMiceOsteogenesisPolyphosphatesDrug Discoverystromal cell-derived factor-1Pharmacology Toxicology and Pharmaceutics (miscellaneous)MC3T3-E1 cellsChemistrybiologizationAnatomy3T3 Cells021001 nanoscience & nanotechnology3. Good healthMembranetensile strength/resistanceAlkaline phosphataseCollagen0210 nano-technologyinorganic polyphosphateSurface PropertiesPolyestersArticleAngiopoietin-203 medical and health sciencesCalcification PhysiologicAnimalsHumansBone regenerationTissue EngineeringPolyphosphateMesenchymal stem cellMembrane ProteinsMembranes ArtificialMesenchymal Stem Cellspolypropylene mesh030104 developmental biologyGene Expression RegulationBiophysicsbiologization; hernia repair; inorganic polyphosphate; collagen-inducing; polypropylene mesh; tensile strength/resistance; stromal cell-derived factor-1; MC3T3-E1 cellsNanoparticlesWound healinghernia repairMarine Drugs
researchProduct

Amorphous, Smart, and Bioinspired Polyphosphate Nano/Microparticles: A Biomaterial for Regeneration and Repair of Osteo-Articular Impairments In-Situ

2018

Using femur explants from mice as an in vitro model, we investigated the effect of the physiological polymer, inorganic polyphosphate (polyP), on differentiation of the cells of the bone marrow in their natural microenvironment into the osteogenic and chondrogenic lineages. In the form of amorphous Ca-polyP nano/microparticles, polyP retains its function to act as both an intra- and extracellular metabolic fuel and a stimulus eliciting morphogenetic signals. The method for synthesis of the nano/microparticles with the polyanionic polyP also allowed the fabrication of hybrid particles with the bisphosphonate zoledronic acid, a drug used in therapy of bone metastases in cancer patients. The r…

0301 basic medicineBone Regenerationlong bone defects; bone marrow cells; inorganic polyphosphate; microparticles; bisphosphonates; <i>Runx2</i>; <i>Sox9</i>; cathepsin-K; tumor metastases; human mesenchymal stem cellsmedicine.medical_treatmentBiocompatible MaterialsCore Binding Factor Alpha 1 SubunitZoledronic Acidlcsh:ChemistryMiceRunx2OsteogenesisPolyphosphatesFemurlcsh:QH301-705.5tumor metastasesSpectroscopymicroparticlescathepsin-KDiphosphonatesTissue ScaffoldsChemistryImidazolesBiomaterialSOX9 Transcription FactorGeneral MedicineUp-RegulationComputer Science ApplicationsCell biologyRUNX2medicine.anatomical_structureinorganic polyphosphateChondrogenesisSox9medicine.drugArticleCatalysisChondrocyteInorganic Chemistryhuman mesenchymal stem cells03 medical and health sciencesOsteoclastmedicineAnimalsHumansPhysical and Theoretical Chemistrybone marrow cellsbisphosphonatesMolecular BiologyOrganic ChemistryMesenchymal stem cellMesenchymal Stem CellsBisphosphonateRatslong bone defects030104 developmental biologyZoledronic acidlcsh:Biology (General)lcsh:QD1-999Gene Expression RegulationNanoparticlesBone marrowInternational Journal of Molecular Sciences
researchProduct

The mycotoxin zearalenone enhances cell proliferation, colony formation and promotes cell migration in the human colon carcinoma cell line HCT116.

2016

IF 3.522; International audience; Zearalenone (ZEN) and Aflatoxin B1 (AFB1) are fungal secondary metabolites produced by Fusarium and Aspergillus genera, respectively. These mycotoxins are found world-wide as corn and wheat contaminants. AFB1 is probably the most toxic and carcinogenic mycotoxin. It has been demonstrated to be mutagenic, genotoxic, and hepatocarcinogenic. ZEN is a non-steroidal estrogenic mycotoxin that displays hepatotoxicity, immunotoxicity and genotoxicity. Its mutagenic and carcinogenic properties have so far remained controversial and questionable. Using the colon carcinoma cell line HCT116, we will show here that ZEN, at low concentrations, enhances cell proliferation…

0301 basic medicineBone-Marrow-CellsAflatoxinAflatoxin B1Time Factors[ SDV.TOX ] Life Sciences [q-bio]/ToxicologyToxicologymedicine.disease_causeInductionchemistry.chemical_compound0302 clinical medicineProliferation assayCell MovementZearalenonebiologyfood and beveragesCell migrationGeneral MedicineMigration assayDna-Damage030220 oncology & carcinogenesis[SDV.TOX]Life Sciences [q-bio]/ToxicologyColonic NeoplasmsZearalenoneChromosome-AberrationsBalb/C MiceFusariumendocrine systemPreventive Role03 medical and health sciencesBotanymedicineHumansNeoplasm InvasivenessMycotoxinCarcinogenCell ProliferationWound HealingDose-Response Relationship DrugCell growthfungiClonogenic assaybiology.organism_classificationHCT116 CellsMolecular biology030104 developmental biologychemistryMcf-7 CellsFusarium ToxinsIn-VitroVitamin-ECarcinogensGenotoxicityToxicology letters
researchProduct

Structural, ultrastructural, and morphometric study of the zebrafish ocular surface: a model for human corneal diseases?

2018

Purpose: A morphological and morphometric study of the adult zebrafish ocular surface was performed to provide a comprehensive description of its parts and to evaluate its similarity to the human. Materials and Methods: The eyes of adult zebrafish were processed for light, transmission and scanning electron microscopy, and for immunohistochemical stain of corneal nerves; a morphometric analysis was also performed on several morphological parameters. Results: The corneal epithelium was formed by five layers of cells. No Bowman’s layer could be demonstrated. The stroma consisted of lamellae of different thickness with few keratocytes. The Descemet’s membrane was absent as the flat and polygon…

0301 basic medicineBowman's layer; corneal nerves; Descemet's membrane; ocular surface; Zebrafish; Ophthalmology; Sensory Systems; Cellular and Molecular NeuroscienceConjunctivaCorneal StromaBiologycorneal nerveCorneal DiseasesCornea03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineMicroscopy Electron TransmissionCorneamedicineAnimalsHumansTrigeminal NerveBowman MembraneZebrafishDescemet MembraneZebrafishTrigeminal nerveocular surfaceBowman’s layerCorneal DiseasesEndothelium CornealEpithelium CornealDescemet’s membraneEpithelial CellsAnatomybiology.organism_classificationSensory SystemsDescemet's membraneOphthalmology030104 developmental biologymedicine.anatomical_structureModels Animal030221 ophthalmology & optometryUltrastructureMicroscopy Electron ScanningGoblet CellsBowman MembraneConjunctivaCurrent eye research
researchProduct