Search results for "COPE"

showing 10 items of 3215 documents

Three-dimensional crystallization of the light-harvesting complex from Mantoniella squamata (Prasinophyceae) requires an adequate purification proced…

1995

Abstract We present a new purification procedure for the light-harvesting complex of Mantoniella squamata whereupon three-dimensional crystallization succeeded. Previous purification methods were based on density centrifugations as the only separating principle. We have extended this preparation procedure by applying anion-exchange and molecular-sieve chromatography techniques. Purity and stability of the complex were proved by denaturing and non-denaturing polyacrylamide-gel electrophoresis, and spectroscopic measurements. With respect to contaminating lipids the purified pigment-protein complex was examined by thin-layer chromatography and the aggregation and/or oligomeric states were inv…

(M. squamata)ChromatographybiologyChemistryPrasinophyceaeSize-exclusion chromatographyAnalytical chemistryBiophysicsCell Biologybiology.organism_classificationMicelleFluorescenceBiochemistrylaw.inventionLight-harvesting complexElectrophoresislawMembrane proteinPhotosynthesisLight-harvesting complexElectron microscopeCrystallizationThree-dimensional crystallizationBiochimica et Biophysica Acta (BBA) - Bioenergetics
researchProduct

Magnetic domain structure of La0.7Sr0.3MnO 3 thin-films probed at variable temperature with scanning electron microscopy with polarization analysis

2013

The domain configuration of 50 nm thick La0.7Sr0.3MnO3 films has been directly investigated using scanning electron microscopy with polarization analysis (SEMPA), with magnetic contrast obtained without the requirement for prior surface preparation. The large scale domain structure reflects a primarily four-fold anisotropy, with a small uniaxial component, consistent with magneto-optic Kerr effect measurements. We also determine the domain transition profile and find it to be in agreement with previous estimates of the domain wall width in this material. The temperature dependence of the image contrast is investigated and compared to superconducting-quantum interference device magnetometry …

010302 applied physicsCondensed Matter - Materials ScienceKerr effectMaterials sciencePhysics and Astronomy (miscellaneous)Spin polarizationMagnetic domainCondensed matter physics530 PhysicsScanning electron microscopeMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology530 Physik021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesMagnetizationMagnetic anisotropy0103 physical sciences0210 nano-technologyAnisotropyApplied Physics Letters
researchProduct

Low energy nano diffraction (LEND) – A versatile diffraction technique in SEM

2019

Abstract Electron diffraction is a powerful characterization method that is used across different fields and in different instruments. In particular, the power of transmission electron microscopy (TEM) largely relies on the capability to switch between imaging and diffraction mode enabling identification of crystalline phases and in-depth studies of crystal defects, to name only examples. In contrast, while diffraction techniques have found their way into the realm of scanning electron microscopy (SEM) in the form of electron backscatter diffraction and related techniques, on-axis transmission diffraction is still in its infancy. Here we present a simple but versatile setup that enables a ‘…

010302 applied physicsDiffractionMaterials scienceGrapheneScanning electron microscopebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCrystallographic defectAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionCharacterization (materials science)Electron diffractionlawTransmission electron microscopy0103 physical sciencesOptoelectronics0210 nano-technologybusinessInstrumentationElectron backscatter diffractionUltramicroscopy
researchProduct

Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement.

2020

Abstract Electron crystallography has focused in the last few years on the analyses of microcrystals, mainly organic compounds, triggered by recent publications on acquisition methods based on direct detection cameras and continuous stage tilting. However, the main capability of a transmission electron microscope is the access to features at the nanometre scale. In this context, a new acquisition method, called fast and automated diffraction tomography (Fast-ADT), has been developed in form of a general application in order to get the most of the diffraction space from a TEM. It consists of two subsequent tilt scans of the goniometric stage; one to obtain a crystal tracking file and a secon…

010302 applied physicsDiffractionMaterials scienceMicroscopeElectron crystallographybusiness.industryContext (language use)02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionDiffraction tomographyOpticsElectron diffractionlawGoniometer0103 physical sciences0210 nano-technologybusinessInstrumentationPowder diffractionUltramicroscopy
researchProduct

Quasi-parallel precession diffraction: Alignment method for scanning transmission electron microscopes.

2018

Abstract A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on …

010302 applied physicsDiffractionMaterials sciencebusiness.industryDetector02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesDark field microscopyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionOpticsElectron diffractionProjectorlaw0103 physical sciencesPrecessionElectron microscope0210 nano-technologybusinessInstrumentationBeam (structure)Ultramicroscopy
researchProduct

Recent improvements on micro-thermocouple based SThM

2017

The scanning thermal microscope (SThM) has become a versatile tool for local surface temperature mapping or measuring thermal properties of solid materials. In this article, we present recent improvements in a SThM system, based on a micro-wire thermocouple probe associated with a quartz tuning fork for contact strength detection. Some results obtained on an electrothermal micro-hotplate device, operated in active and passive modes, allow demonstrating its performance as a coupled force detection and thermal measurement system.

010302 applied physicsHistoryMicroscopeMaterials scienceSystem of measurementQuartz tuning forkNanotechnologyContact strength02 engineering and technologySolid material021001 nanoscience & nanotechnology01 natural sciencesComputer Science ApplicationsEducationlaw.inventionThermocouplelaw0103 physical sciencesThermal0210 nano-technologyTemperature mappingJournal of Physics: Conference Series
researchProduct

Silicon Surface Passivation by ALD-Ga2O3: Thermal vs. Plasma-Enhanced Atomic Layer Deposition

2020

Silicon surface passivation by gallium oxide (Ga2O3) thin films deposited by thermal- and plasma-enhanced atomic layer deposition (ALD) over a broad temperature range from 75 °C to 350 °C is investigated. In addition, the role of oxidant (O3 or O-plasma) pulse lengths insufficient for saturated ALD-growth is studied. The material properties are analyzed including the quantification of the incorporated hydrogen. We find that oxidant dose pulses insufficient for saturation provide for both ALD methods generally better surface passivation. Furthermore, different Si surface pretreatments are compared (HF-last, chemically grown oxide, and thermal tunnel oxide). In contrast to previous reports, t…

010302 applied physicsKelvin probe force microscopeMaterials sciencePassivationSiliconAnnealing (metallurgy)OxideAnalytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsAtomic layer depositionchemistry.chemical_compoundchemistry0103 physical sciencesElectrical and Electronic EngineeringThin film0210 nano-technologyUltraviolet photoelectron spectroscopyIEEE Journal of Photovoltaics
researchProduct

Determination of Contact Potential Difference by the Kelvin Probe (Part II) 2. Measurement System by Involving the Composite Bucking Voltage

2016

Abstract The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.

010302 applied physicsKelvin probe force microscopeMaterials sciencesurface potentialbusiness.industrySystem of measurementPhysicsQC1-999Composite numberGeneral EngineeringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOpticscontact potential differencekelvin probe0103 physical sciences0210 nano-technologybusinessVolta potentialVoltageLatvian Journal of Physics and Technical Sciences
researchProduct

Polarity conversion of GaN nanowires grown by plasma-assisted molecular beam epitaxy

2019

International audience; It is demonstrated that the N-polarity of GaN nanowires (NWs) spontaneously nucleated on Si (111) by molecular beam epitaxy can be reversed by intercalation of an Al-or Ga-oxynitride thin layer. The polarity change has been assessed by a combination of chemical etching, Kelvin probe force microscopy, cathodo-and photoluminescence spectroscopy and transmission electron microscopy experiments. Cathodoluminescence of the Ga-polar NW section exhibits a higher intensity in the band edge region, consistent with a reduced incorporation of chemical impurities. The polarity reversal method we propose opens the path to the integration of optimized metal-polar NW devices on any…

010302 applied physicsKelvin probe force microscopePolarity reversalMaterials sciencePhysics and Astronomy (miscellaneous)Polarity (physics)business.industryNanowireCathodoluminescence02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energyIsotropic etching[SPI.MAT]Engineering Sciences [physics]/MaterialsNanolithography0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologybusinessMolecular beam epitaxy
researchProduct

Object size effect on the contact potential difference measured by scanning Kelvin probe method

2010

International audience; Contact potential difference (CPD) was measured by macroscopic Kelvin probe instrument and scanning Kelvin probe microscope on Al, Ni and Pt on ITO substrates at ambient conditions. CPD values measured by scanning Kelvin probe microscope and macroscopic Kelvin probe are close within the error of about 10-30% for large studied objects, whereas scanning Kelvin probe microscope signal decreases, when the object size becomes smaller than 1.4 m. CPD and electric field signals measured using many-pass technique allowed us to estimate the influence of electrostatic field disturbance, especially, in the case of small objects.

010302 applied physicsKelvin probe force microscopeScanning Hall probe microscopeMicroscopeChemistrybusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSignalElectronic Optical and Magnetic Materialslaw.inventionScanning probe microscopyOpticslawElectric field0103 physical sciencesPhysical Sciences0210 nano-technologybusinessInstrumentationVolta potential
researchProduct