Search results for "Commutative algebra"

showing 10 items of 127 documents

Computing with Rational Symmetric Functions and Applications to Invariant Theory and PI-algebras

2012

The research of the first named author was partially supported by INdAM. The research of the second, third, and fourth named authors was partially supported by Grant for Bilateral Scientific Cooperation between Bulgaria and Ukraine. The research of the fifth named author was partially supported by NSF Grant DMS-1016086.

Classical Invariant Theory05A15 05E05 05E10 13A50 15A72 16R10 16R30 20G05MacMahon Partition AnalysisHilbert SeriesRational symmetric functions classical invariant theory algebras with polynomial identity cocharacter sequenceMathematics - Rings and AlgebrasCommutative Algebra (math.AC)Mathematics - Commutative AlgebraRational Symmetric FunctionsAlgebras with Polynomial IdentitySettore MAT/02 - AlgebraRings and Algebras (math.RA)Noncommutative Invariant TheoryFOS: MathematicsCocharacter SequenceMathematics - CombinatoricsCombinatorics (math.CO)
researchProduct

F-signature of pairs and the asymptotic behavior of Frobenius splittings

2012

We generalize $F$-signature to pairs $(R,D)$ where $D$ is a Cartier subalgebra on $R$ as defined by the first two authors. In particular, we show the existence and positivity of the $F$-signature for any strongly $F$-regular pair. In one application, we answer an open question of I. Aberbach and F. Enescu by showing that the $F$-splitting ratio of an arbitrary $F$-pure local ring is strictly positive. Furthermore, we derive effective methods for computing the $F$-signature and the $F$-splitting ratio in the spirit of the work of R. Fedder.

Pure mathematicsGeneral Mathematics13A35 13D40 14B05 13H10010102 general mathematicsSubalgebraLocal ringSplitting primeF-regularCommutative Algebra (math.AC)Mathematics - Commutative AlgebraF-signatureF-splitting ratio01 natural sciencesF-pureMathematics - Algebraic GeometryCartier algebra0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsSignature (topology)Algebraic Geometry (math.AG)Mathematics
researchProduct

Gradings on the algebra of upper triangular matrices of size three

2013

Abstract Let UT 3 ( F ) be the algebra of 3 × 3 upper triangular matrices over a field F . On UT 3 ( F ) , up to isomorphism, there are at most five non-trivial elementary gradings and we study the graded polynomial identities for such gradings. In case F is of characteristic zero we give a complete description of the space of multilinear graded identities in the language of Young diagrams through the representation theory of a Young subgroup of S n . We finally compute the multiplicities in the graded cocharacter sequence for every elementary G -grading on UT 3 ( F ) .

Numerical AnalysisMultilinear mapPolynomialAlgebra and Number TheoryMathematics::Commutative AlgebraMathematics::Rings and AlgebrasZero (complex analysis)Triangular matrixField (mathematics)Representation theorypolynomial identity G-graded algebras cocharacters graded ideals of identitiesCombinatoricsAlgebraSettore MAT/02 - AlgebraDifferential graded algebraDiscrete Mathematics and CombinatoricsGeometry and TopologyIsomorphismComputer Science::Information TheoryMathematics
researchProduct

Group graded algebras and almost polynomial growth

2011

Let F be a field of characteristic 0, G a finite abelian group and A a G-graded algebra. We prove that A generates a variety of G-graded algebras of almost polynomial growth if and only if A has the same graded identities as one of the following algebras: (1) FCp, the group algebra of a cyclic group of order p, where p is a prime number and p||G|; (2) UT2G(F), the algebra of 2×2 upper triangular matrices over F endowed with an elementary G-grading; (3) E, the infinite dimensional Grassmann algebra with trivial G-grading; (4) in case 2||G|, EZ2, the Grassmann algebra with canonical Z2-grading.

Algebra and Number TheoryGraded algebra Polynomial identity Growth CodimensionsMathematics::Commutative AlgebraSubalgebraUniversal enveloping algebraGrowthPolynomial identityGraded algebraCodimensionsGraded Lie algebraFiltered algebraCombinatoricsSettore MAT/02 - AlgebraDifferential graded algebraDivision algebraAlgebra representationCellular algebraMathematics
researchProduct

On two topological cardinal invariants of an order-theoretic flavour

2012

Noetherian type and Noetherian $\pi$-type are two cardinal functions which were introduced by Peregudov in 1997, capturing some properties studied earlier by the Russian School. Their behavior has been shown to be akin to that of the \emph{cellularity}, that is the supremum of the sizes of pairwise disjoint non-empty open sets in a topological space. Building on that analogy, we study the Noetherian $\pi$-type of $\kappa$-Suslin Lines, and we are able to determine it for every $\kappa$ up to the first singular cardinal. We then prove a consequence of Chang's Conjecture for $\aleph_\omega$ regarding the Noetherian type of countably supported box products which generalizes a result of Lajos S…

NoetherianHigher Suslin LinePixley–Roy hyperspacePrimary: 03E04 54A25 Secondary: 03E35 54D70LogicOpen setMathematics::General TopologyDisjoint setsTopological spaceType (model theory)TopologyChangʼs ConjectureChangʼs Conjecture for ℵωFOS: MathematicsBox productMathematicsMathematics - General TopologyConjectureMathematics::Commutative AlgebraGeneral Topology (math.GN)PCF theoryNoetherian typeMathematics - LogicInfimum and supremumMathematics::LogicOIF spaceLogic (math.LO)
researchProduct

Multiprojective spaces and the arithmetically Cohen-Macaulay property

2019

AbstractIn this paper we study the arithmetically Cohen-Macaulay (ACM) property for sets of points in multiprojective spaces. Most of what is known is for ℙ1× ℙ1and, more recently, in (ℙ1)r. In ℙ1× ℙ1the so called inclusion property characterises the ACM property. We extend the definition in any multiprojective space and we prove that the inclusion property implies the ACM property in ℙm× ℙn. In such an ambient space it is equivalent to the so-called (⋆)-property. Moreover, we start an investigation of the ACM property in ℙ1× ℙn. We give a new construction that highlights how different the behavior of the ACM property is in this setting.

Pure mathematicsArithmetically Cohen-Macaulay multiprojective spacesProperty (philosophy)points in multiprojective spaces arithmetically Cohen-Macaulay linkageGeneral MathematicsStar (graph theory)Space (mathematics)Commutative Algebra (math.AC)01 natural sciencesMathematics - Algebraic Geometryarithmetically Cohen-MacaulayTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesFOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)Mathematics010102 general mathematics14M05 13C14 13C40 13H10 13A15Mathematics - Commutative Algebrapoints in multiprojective spacesAmbient spaceSettore MAT/02 - Algebra010307 mathematical physicsSettore MAT/03 - Geometrialinkage
researchProduct

Linear quotients of Artinian Weak Lefschetz algebras

2013

Abstract We study the Hilbert function and the graded Betti numbers for “generic” linear quotients of Artinian standard graded algebras, especially in the case of Weak Lefschetz algebras. Moreover, we investigate a particular property of Weak Lefschetz algebras, the Betti Weak Lefschetz Property, which makes possible to completely determine the graded Betti numbers of a generic linear quotient of such algebras.

Discrete mathematicsPure mathematicsHilbert series and Hilbert polynomialAlgebra and Number TheoryProperty (philosophy)Mathematics::Commutative AlgebraBetti numberBetti Weak Lefschetz PropertyMathematics::Rings and AlgebrasArtinian algebraLinear quotientWeak Lefschetz Propertysymbols.namesakeQuotientWeak Lefschetz; Artinian algebra; QuotientsymbolsWeak Lefschetz Property Artinian algebra Linear quotientLefschetz fixed-point theoremWeak LefschetzMathematics::Symplectic GeometryQuotientMathematics
researchProduct

On the Betti numbers of three fat points in P1 × P1

2019

In these notes we introduce a numerical function which allows us to describe explicitly (and nonrecursively) the Betti numbers, and hence, the Hilbert function of a set Z of three fat points whose support is an almost complete intersection (ACI) in P1 × P1 . A nonrecursively formula for the Betti numbers and the Hilbert function of these configurations is hard to give even for the corresponding set of five points on a special support in P2 and we did not find any kind of this result in the literature. Moreover, we also give a criterion that allows us to characterize the Hilbert functions of these special set of fat points.

13F20Fat points Hilbert functions Multiprojective spaces13A15Fat pointsMathematics - Commutative Algebra13D40Mathematics - Algebraic GeometrySettore MAT/02 - AlgebraFat points; Hilbert functions; Multiprojective spacesMultiprojective spacesSettore MAT/03 - GeometriaMathematics - Algebraic Geometry; Mathematics - Algebraic Geometry; Mathematics - Commutative Algebra; 13F20 13A15 13D40 14M0514M05Hilbert functions
researchProduct

Asymptotics for Graded Capelli Polynomials

2014

The finite dimensional simple superalgebras play an important role in the theory of PI-algebras in characteristic zero. The main goal of this paper is to characterize the T 2-ideal of graded identities of any such algebra by considering the growth of the corresponding supervariety. We consider the T 2-ideal Γ M+1,L+1 generated by the graded Capelli polynomials C a p M+1[Y,X] and C a p L+1[Z,X] alternanting on M+1 even variables and L+1 odd variables, respectively. We prove that the graded codimensions of a simple finite dimensional superalgebra are asymptotically equal to the graded codimensions of the T 2-ideal Γ M+1,L+1, for some fixed natural numbers M and L. In particular csupn(Γk2+l2+1…

CombinatoricsDiscrete mathematicsSettore MAT/02 - AlgebraMathematics::Commutative AlgebraGeneral MathematicsSuperalgebras Polynomial identities Codimensions GrowthZero (complex analysis)Natural numberAlgebra over a fieldSuperalgebraMathematics
researchProduct

The polyhedral Hodge number $h^{2,1}$ and vanishing of obstructions

2000

We prove a vanishing theorem for the Hodge number $h^{2,1}$ of projective toric varieties provided by a certain class of polytopes. We explain how this Hodge number also gives information about the deformation theory of the toric Gorenstein singularity derived from the same polytope. In particular, the vanishing theorem for $h^{2,1}$ implies that these deformations are unobstructed.

AlgebraPure mathematicsClass (set theory)Mathematics::Algebraic GeometrySingularityMathematics::Commutative AlgebraGeneral MathematicsDeformation theoryPolytope52B2014M25Mathematics::Symplectic GeometryMathematicsTohoku Mathematical Journal
researchProduct