Search results for "Convolutional Neural Networks"

showing 10 items of 29 documents

USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets

2019

Prostate cancer is the most common malignant tumors in men but prostate Magnetic Resonance Imaging (MRI) analysis remains challenging. Besides whole prostate gland segmentation, the capability to differentiate between the blurry boundary of the Central Gland (CG) and Peripheral Zone (PZ) can lead to differential diagnosis, since tumor's frequency and severity differ in these regions. To tackle the prostate zonal segmentation task, we propose a novel Convolutional Neural Network (CNN), called USE-Net, which incorporates Squeeze-and-Excitation (SE) blocks into U-Net. Especially, the SE blocks are added after every Encoder (Enc USE-Net) or Encoder-Decoder block (Enc-Dec USE-Net). This study ev…

FOS: Computer and information sciences0209 industrial biotechnologyComputer Science - Machine LearningGeneralizationComputer scienceComputer Vision and Pattern Recognition (cs.CV)Cognitive NeuroscienceComputer Science - Computer Vision and Pattern RecognitionConvolutional neural network02 engineering and technologyConvolutional neural networkMachine Learning (cs.LG)Image (mathematics)Prostate cancer020901 industrial engineering & automationArtificial IntelligenceProstate0202 electrical engineering electronic engineering information engineeringmedicineMedical imagingAnatomical MRISegmentationBlock (data storage)Prostate cancermedicine.diagnostic_testSettore INF/01 - Informaticabusiness.industryAnatomical MRI; Convolutional neural networks; Cross-dataset generalization; Prostate cancer; Prostate zonal segmentation; USE-NetINF/01 - INFORMATICAMagnetic resonance imagingPattern recognitionUSE-Netmedicine.diseaseComputer Science Applicationsmedicine.anatomical_structureCross-dataset generalizationFeature (computer vision)Prostate zonal segmentation020201 artificial intelligence & image processingConvolutional neural networksArtificial intelligencebusinessEncoder
researchProduct

Cross-Sensor Adversarial Domain Adaptation of Landsat-8 and Proba-V images for Cloud Detection

2021

The number of Earth observation satellites carrying optical sensors with similar characteristics is constantly growing. Despite their similarities and the potential synergies among them, derived satellite products are often developed for each sensor independently. Differences in retrieved radiances lead to significant drops in accuracy, which hampers knowledge and information sharing across sensors. This is particularly harmful for machine learning algorithms, since gathering new ground truth data to train models for each sensor is costly and requires experienced manpower. In this work, we propose a domain adaptation transformation to reduce the statistical differences between images of two…

FOS: Computer and information sciencesAtmospheric ScienceComputer Science - Machine LearningGenerative adversarial networks010504 meteorology & atmospheric sciencesComputer scienceRemote sensing applicationdomain adaptationGeophysics. Cosmic physics0211 other engineering and technologiesCloud computing02 engineering and technologycomputer.software_genre01 natural sciencesImage (mathematics)Data modelingMachine Learning (cs.LG)convolutional neural networksFOS: Electrical engineering electronic engineering information engineeringLandsat-8Computers in Earth SciencesAdaptation (computer science)TC1501-1800021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryQC801-809Image and Video Processing (eess.IV)Electrical Engineering and Systems Science - Image and Video ProcessingOcean engineeringTransformation (function)cloud detectionSatelliteData miningProba-VTransfer of learningbusinesscomputer
researchProduct

A Deep Network Approach to Multitemporal Cloud Detection

2018

We present a deep learning model with temporal memory to detect clouds in image time series acquired by the Seviri imager mounted on the Meteosat Second Generation (MSG) satellite. The model provides pixel-level cloud maps with related confidence and propagates information in time via a recurrent neural network structure. With a single model, we are able to outline clouds along all year and during day and night with high accuracy.

FOS: Computer and information sciencesComputer Science - Machine Learning010504 meteorology & atmospheric sciencesComputer scienceFeature extraction0211 other engineering and technologiesCloud detectionFOS: Physical sciencesCloud computing02 engineering and technologyCloud detection01 natural sciencesMachine Learning (cs.LG)Laboratory of Geo-information Science and Remote SensingLaboratorium voor Geo-informatiekunde en Remote Sensing021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingbusiness.industrySeviriDeep learningDeep learningPE&RCPhysics - Atmospheric and Oceanic PhysicsRecurrent neural networkRecurrent neural networksAtmospheric and Oceanic Physics (physics.ao-ph)Convolutional neural networksSatelliteArtificial intelligencebusinessNetwork approachIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Transfer Learning with Convolutional Networks for Atmospheric Parameter Retrieval

2018

The Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp satellite series provides important measurements for Numerical Weather Prediction (NWP). Retrieving accurate atmospheric parameters from the raw data provided by IASI is a large challenge, but necessary in order to use the data in NWP models. Statistical models performance is compromised because of the extremely high spectral dimensionality and the high number of variables to be predicted simultaneously across the atmospheric column. All this poses a challenge for selecting and studying optimal models and processing schemes. Earlier work has shown non-linear models such as kernel methods and neural networks perform w…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceFeature extraction0211 other engineering and technologiesTranfer learningFOS: Physical sciences02 engineering and technologyAtmospheric modelInfrared atmospheric sounding interferometercomputer.software_genreConvolutional neural networkMachine Learning (cs.LG)0202 electrical engineering electronic engineering information engineeringInfrared measurements021101 geological & geomatics engineeringArtificial neural networkStatistical modelNumerical weather predictionParameter retrievalPhysics - Atmospheric and Oceanic PhysicsKernel method13. Climate actionAtmospheric and Oceanic Physics (physics.ao-ph)Convolutional neural networks020201 artificial intelligence & image processingData miningcomputerCurse of dimensionalityIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Human experts vs. machines in taxa recognition

2020

The step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets with the transfer learning paradigm and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hier…

FOS: Computer and information sciencesComputer Science - Machine Learninghahmontunnistus (tietotekniikka)Computer scienceClassification approachTaxonomic expert02 engineering and technologyneuroverkotcomputer.software_genreConvolutional neural networkQuantitative Biology - Quantitative MethodsField (computer science)Machine Learning (cs.LG)Machine learning approachesStatistics - Machine LearningAutomated approachDeep neural networks0202 electrical engineering electronic engineering information engineeringTaxonomic rankQuantitative Methods (q-bio.QM)Classification (of information)Artificial neural networksystematiikka (biologia)Prediction accuracyIdentification (information)koneoppiminenMulti-image dataBenchmark (computing)020201 artificial intelligence & image processingConvolutional neural networksComputer Vision and Pattern RecognitionClassification errorsMachine Learning (stat.ML)Machine learningState of the artElectrical and Electronic EngineeringTaxonomySupport vector machinesLearning systemsbusiness.industryNode (networking)020206 networking & telecommunicationsComputer circuitsHierarchical classificationConvolutionSupport vector machineFOS: Biological sciencesTaxonomic hierarchySignal ProcessingBiomonitoringBenchmark datasetsArtificial intelligencebusinesscomputertaksonitSoftware
researchProduct

Rule Extraction From Binary Neural Networks With Convolutional Rules for Model Validation.

2020

Classification approaches that allow to extract logical rules such as decision trees are often considered to be more interpretable than neural networks. Also, logical rules are comparatively easy to verify with any possible input. This is an important part in systems that aim to ensure correct operation of a given model. However, for high-dimensional input data such as images, the individual symbols, i.e. pixels, are not easily interpretable. Therefore, rule-based approaches are not typically used for this kind of high-dimensional data. We introduce the concept of first-order convolutional rules, which are logical rules that can be extracted using a convolutional neural network (CNN), and w…

FOS: Computer and information sciencesComputer Science - Machine Learningstochastic local searchrule extractionComputer Science - Artificial Intelligencelogical rulesQA75.5-76.95004 InformatikMachine Learning (cs.LG)Artificial Intelligence (cs.AI)Artificial IntelligenceElectronic computers. Computer scienceconvolutional neural networksk-term DNFinterpretability004 Data processingOriginal ResearchFrontiers in artificial intelligence
researchProduct

Time Difference of Arrival Estimation from Frequency-Sliding Generalized Cross-Correlations Using Convolutional Neural Networks

2020

The interest in deep learning methods for solving traditional signal processing tasks has been steadily growing in the last years. Time delay estimation (TDE) in adverse scenarios is a challenging problem, where classical approaches based on generalized cross-correlations (GCCs) have been widely used for decades. Recently, the frequency-sliding GCC (FS-GCC) was proposed as a novel technique for TDE based on a sub-band analysis of the cross-power spectrum phase, providing a structured two-dimensional representation of the time delay information contained across different frequency bands. Inspired by deep-learning-based image denoising solutions, we propose in this paper the use of convolutio…

FOS: Computer and information sciencesSound (cs.SD)Computer sciencePhase (waves)Distributed microphones02 engineering and technologyConvolutional neural networkComputer Science - Sound030507 speech-language pathology & audiology03 medical and health sciencesAudio and Speech Processing (eess.AS)FOS: Electrical engineering electronic engineering information engineering0202 electrical engineering electronic engineering information engineeringGCCRepresentation (mathematics)Signal processingbusiness.industryI.5.4Deep learningConvolutional Neural Networks020206 networking & telecommunicationsTime delay estimationMultilaterationI.2.094A12 68T10LocalizationArtificial intelligence0305 other medical sciencebusinessAlgorithmElectrical Engineering and Systems Science - Audio and Speech ProcessingI.2.0; I.5.4ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
researchProduct

A Comparative Analysis of Residual Block Alternatives for End-to-End Audio Classification

2020

Residual learning is known for being a learning framework that facilitates the training of very deep neural networks. Residual blocks or units are made up of a set of stacked layers, where the inputs are added back to their outputs with the aim of creating identity mappings. In practice, such identity mappings are accomplished by means of the so-called skip or shortcut connections. However, multiple implementation alternatives arise with respect to where such skip connections are applied within the set of stacked layers making up a residual block. While residual networks for image classification using convolutional neural networks (CNNs) have been widely discussed in the literature, their a…

Normalization (statistics)General Computer ScienceComputer scienceFeature extractionESC02 engineering and technologycomputer.software_genreResidualConvolutional neural networkconvolutional neural networks0202 electrical engineering electronic engineering information engineeringGeneral Materials Scienceurbansound8kAudio signal processingBlock (data storage)Contextual image classificationGeneral EngineeringAudio classification020206 networking & telecommunications113 Computer and information sciences020201 artificial intelligence & image processinglcsh:Electrical engineering. Electronics. Nuclear engineeringData mininglcsh:TK1-9971computerresidual learningIEEE Access
researchProduct

Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours—A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and …

2022

Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. In this second part of a three-phase pilot study, we used a novel hand-held SICSURFIS Spectral Imager with an adaptable field of view and target-wise selectable wavelength channels to provide detailed spectral and spatial data for lesions on complex surfaces. The hyperspectral images (33 wavelengths, 477–891 nm) provided photometric data through individually controlled illumination modules, enabling convolutional networks to utilise spectral, spatial, and skin-surface mo…

OPTICAL COHERENCE TOMOGRAPHYskin cancerhyperspectral imagingskin imagingphotometric stereoMELANOMAGeneral Medicineneuroverkotdiagnostiikkabiomedical optical imagingnon-invasive imagingDIAGNOSISCANCERoptical modellingkarsinoomatCLASSIFICATIONihosyöpäkoneoppiminenSDG 3 - Good Health and Well-beingbiomedical optical imaging; convolutional neural networks; hyperspectral imaging; non-invasive imaging; optical modelling; photometric stereo; skin cancer; skin imaging3121 General medicine internal medicine and other clinical medicineconvolutional neural networks/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingmelanoomahyperspektrikuvantaminen
researchProduct

Fingerprint classification based on deep learning approaches: Experimental findings and comparisons

2021

Biometric classification plays a key role in fingerprint characterization, especially in the identification process. In fact, reducing the number of comparisons in biometric recognition systems is essential when dealing with large-scale databases. The classification of fingerprints aims to achieve this target by splitting fingerprints into different categories. The general approach of fingerprint classification requires pre-processing techniques that are usually computationally expensive. Deep Learning is emerging as the leading field that has been successfully applied to many areas, such as image processing. This work shows the performance of pre-trained Convolutional Neural Networks (CNNs…

Physics and Astronomy (miscellaneous)BiometricsComputer scienceGeneral Mathematicsfingerprint featuresfingerprint classification; deep learning; convolutional neural networks; fingerprint featuresConvolutional neural networks Deep learning Fingerprint classification Fingerprint featuresImage processing02 engineering and technologyConvolutional neural networkField (computer science)fingerprint classification020204 information systemsconvolutional neural networksQA1-9390202 electrical engineering electronic engineering information engineeringComputer Science (miscellaneous)Reliability (statistics)business.industryDeep learningFingerprint (computing)deep learningPattern recognitionIdentification (information)Chemistry (miscellaneous)Convolutional neural networks; Deep learning; Fingerprint classification; Fingerprint features020201 artificial intelligence & image processingArtificial intelligencebusinessMathematics
researchProduct