Search results for "DOTS"

showing 10 items of 181 documents

Light-harvesting chlorophyll protein (LHCII) drives electron transfer in semiconductor nanocrystals

2017

Type-II quantum dots (QDs) are capable of light-driven charge separation between their core and the shell structures; however, their light absorption is limited in the longer-wavelength range. Biological light-harvesting complex II (LHCII) efficiently absorbs in the blue and red spectral domains. Therefore, hybrid complexes of these two structures may be promising candidates for photovoltaic applications. Previous measurements had shown that LHCII bound to QD can transfer its excitation energy to the latter, as indicated by the fluorescence emissions of LHCII and QD being quenched and sensitized, respectively. In the presence of methyl viologen (MV), both fluorescence emissions are quenched…

ChlorophyllParaquatPhotosynthetic reaction centreMaterials scienceAbsorption spectroscopyLight-Harvesting Protein ComplexesBiophysics02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesBiochemistryElectron TransportLight-harvesting complexElectron transferQuantum DotsUltrafast laser spectroscopyFluorescence Resonance Energy TransferAction spectrumPeasPhotosystem II Protein ComplexCell Biology021001 nanoscience & nanotechnologyFluorescence0104 chemical sciencesSemiconductorsQuantum dotNanoparticles0210 nano-technologyBiochimica et Biophysica Acta (BBA) - Bioenergetics
researchProduct

Struktūra un fotofizikālie procesi 0D un 1D InGaN kompozītu materiālos

2014

Šajā disertācijā tiek aprakstīti strukturālās un fotofizikālās MOCVD izaudzēto GaN nanovadu (NV) un InGaN kvantu punktu (KP) īpašības. Abos gadījumos ir parādīts, ka ex-situ RHEED mērījumi ir iespējami un sniedz kvalitatīvu informāciju par struktūru. Kombinācijā ar citām metodēm, pirmkārt, ir parādīts, ka nemetāliskā katalizatora veicinātā GaN NV īpašības, kad sintezēts uz GaN (0001) virsmas, atšķiras no tradicionāli iegūtajiem. Šinī gadījumā katalizators lokalizējas pie nanovadu pamatnes nevis tā galā un augšanas virziens ir atšķirīgs no kristalogrāfiskās c-ass, rezultātā iegūstot semipolārās NV struktūras. Otrkārt, InGaN kvantu punktos ir konstatēt saspiesta kristāliskā režģa struktūra au…

Cietvielu fizikanemetālisks katalizatorsSolid-state physicsnon-metallic catalistGaN nanowiresInGaN quantum dotsFizika materiālzinātne matemātika un statistikaInGaN kvantu punktinano-SIMSGaN nanovadiFizikaex-situ RHEEDFizika astronomija un mehānika
researchProduct

Halloysite nanotubes-carbon dots hybrids multifunctional nanocarrier with positive cell target ability as a potential non-viral vector for oral gene …

2019

Abstract Hypothesis The use of non-viral vectors for gene therapy is hindered by their lower transfection efficiency and their lacking of self-track ability. Experiments This study aims to investigate the biological properties of halloysite nanotubes-carbon dots hybrid and its potential use as non-viral vector for oral gene therapy. The morphology and the chemical composition of the halloysite hybrid were investigated by means of high angle annular dark field scanning TEM and electron energy loss spectroscopy techniques, respectively. The cytotoxicity and the antioxidant activity were investigated by standard methods (MTS, DPPH and H2O2, respectively) using human cervical cancer HeLa cells …

Circular dichroismCell SurvivalSurface PropertiesStatic ElectricityAdministration Oral02 engineering and technologyCellular imagingengineering.material010402 general chemistry01 natural sciencesHalloysiteAntioxidantsBiomaterialsHeLaColloid and Surface ChemistryDynamic light scatteringFluorescence microscopeTumor Cells CulturedCarbon dotsAnimalsHumansParticle SizeSettore CHIM/02 - Chimica FisicaDrug CarriersbiologyMolecular StructureHalloysite nanotubesChemistryNanotubes CarbonOptical ImagingGene Transfer TechniquesTransfectionDNASettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnologybiology.organism_classificationDark field microscopyDNA interaction0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHalloysite nanotubes Carbon dots DNA interaction Cellular imagingengineeringBiophysicsCattleNanocarriers0210 nano-technologyPorosityHeLa Cells
researchProduct

Sensing Chiral Drugs by Using CdSe/ZnS Nanoparticles Capped withN-Acetyl-L-Cysteine Methyl Ester

2013

Chiral quantum dots (QDs), differing in their core or shell size and, consequently, in their optical properties, were synthesized by the treatment of commercially available amine-capped quantum dots with methyl ester N-acetyl-L-cysteine (CysP). Interestingly, their colloidal methanol solutions remain stable for several months. Their NMR and IR spectra were in accordance with CysP binding to the QD surface through two anchoring groups; its thiolate (strongly bound) and the carbonyl group of its ester (weaker bound) group, whereas their circular dichroism (CD) spectra showed a new broad redshifted band, suggesting that the attachment to the QD surface modified the conformational equilibrium t…

Circular dichroismNaproxenStereochemistryInfrared spectroscopyIbuprofenSulfidesCatalysischemistry.chemical_compoundNaproxenQuantum DotsCadmium CompoundsmedicineSelenium CompoundsConformational isomerismChemistryCircular DichroismArylOrganic ChemistryEstersStereoisomerismGeneral ChemistryFluorescenceAcetylcysteineCrystallographySpectrometry FluorescenceFlurbiprofenPharmaceutical PreparationsKetoprofenZinc CompoundsQuantum dotEnantiomermedicine.drugChemistry - A European Journal
researchProduct

A random-walk benchmark for single-electron circuits

2021

Mesoscopic integrated circuits aim for precise control over elementary quantum systems. However, as fidelities improve, the increasingly rare errors and component crosstalk pose a challenge for validating error models and quantifying accuracy of circuit performance. Here we propose and implement a circuit-level benchmark that models fidelity as a random walk of an error syndrome, detected by an accumulating probe. Additionally, contributions of correlated noise, induced environmentally or by memory, are revealed as limits of achievable fidelity by statistical consistency analysis of the full distribution of error counts. Applying this methodology to a high-fidelity implementation of on-dema…

Computer scienceScienceFOS: Physical sciencesGeneral Physics and AstronomyWord error rateQuantum metrology02 engineering and technologyIntegrated circuit01 natural sciencesNoise (electronics)ArticleGeneral Biochemistry Genetics and Molecular Biologylaw.inventionComputer Science::Hardware ArchitecturelawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesElectronic devicesQuantum metrology010306 general physicsQuantumQuantum computerQuantum PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum dotsQGeneral Chemistry021001 nanoscience & nanotechnologyRandom walkComputerSystemsOrganization_MISCELLANEOUSBenchmark (computing)Quantum Physics (quant-ph)0210 nano-technologyAlgorithmNature Communications
researchProduct

Vortices in rotating two-component boson and fermion traps

2010

Quantum liquids may carry angular momentum by the formation of vortex states. This is well known for Bose-Einstein condensates in rotating traps, and was even found to occur in quantum dots at strong magnetic fields. Here we consider a two-component quantum liquid, where coreless vortices and interlaced lattices of coreless vortices appear in a very similar way for fermions and bosons with repulsive two-body interactions. The ground states at given angular momentum, as well as the pair correlations for equal and different numbers of atoms in the two components, are studied. (C) 2009 Elsevier B.V. All rights reserved.

Condensed Matter::Quantum GasesPhysicsAngular momentumta214Condensed matter physicsta114ta221vorticesquantum dotsFermionCondensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionVortexlawQuantum dotTotal angular momentum quantum numberQuantum mechanicsAngular momentum couplingBose–Einstein condensateta218BosonPHYSICA E: LOW: DIMENSIONAL SYSTEMS AND NANOSTRUCTURES
researchProduct

Random population model to explain the recombination dynamics in single InAs/GaAs quantum dots under selective optical pumping

2011

18 páginas, 3 tablas, 9 figuras.-- et al.

Condensed Matter::Quantum GasesPhysicsPhotoluminescenceCondensed Matter::OtherInAs/GaAs Quantum DotsExcitonGeneral Physics and AstronomyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectResonance (particle physics)Optical pumpingCondensed Matter::Materials ScienceQuantum dotTrionAtomic physicsExcitationBiexcitonNew Journal of Physics
researchProduct

Quantum-state transfer via resonant tunneling through local-field-induced barriers

2013

Efficient quantum-state transfer is achieved in a uniformly coupled spin-1/2 chain, with open boundaries, by application of local magnetic fields on the second and last-but-one spins, respectively. These effective barriers induce the appearance of two eigenstates, bilocalized at the edges of the chain, which allow a high-quality transfer also at relatively long distances. The same mechanism may be used to send an entire e-bit (e.g., an entangled qubit pair) from one to the other end of the chain. DOI: 10.1103/PhysRevA.87.042313

DYNAMICSDISORDERPhysicsDOTSQuantum PhysicsENTANGLEMENT; CHAINS; PROPAGATION; DYNAMICS; DISORDER; QUBITS; DOTSCondensed matter physicsSpinsFOS: Physical sciencesPROPAGATIONSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsQUBITSMagnetic fieldCondensed Matter - Other Condensed MatterQuality (physics)Chain (algebraic topology)QubitCHAINSQuantum Physics (quant-ph)Quantum information scienceENTANGLEMENTLocal fieldQuantum tunnellingOther Condensed Matter (cond-mat.other)Physical Review A
researchProduct

Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots

2012

We have investigated the temperature dependent recombination dynamics in two bimodally distributed InAs self assembled quantum dots samples. A rate equations model has been implemented to investigate the thermally activated carrier escape mechanism which changes from exciton-like to uncorrelated electron and hole pairs as the quantum dot size varies. For the smaller dots, we find a hot exciton thermal escape process. We evaluated the thermal transfer process between quantum dots by the quantum dot density and carrier escape properties of both samples. © 2012 American Institute of Physics.

DYNAMICSMaterials scienceAtmospheric escapeCondensed matter physicsExcitonGeneral Physics and AstronomyElectronRate equationThermal transferEPITAXYCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGallium arsenidechemistry.chemical_compoundCondensed Matter::Materials SciencechemistrySTATESself assembled quantum dots rate equations model carrier escape propertiesQuantum dotQuantum dot laserLUMINESCENCEPHOTOLUMINESCENCE
researchProduct

Continuous-Variable Tomography of Solitary Electrons

2019

A method for characterising the wave-function of freely-propagating particles would provide a useful tool for developing quantum-information technologies with single electronic excitations. Previous continuous-variable quantum tomography techniques developed to analyse electronic excitations in the energy-time domain have been limited to energies close to the Fermi level. We show that a wide-band tomography of single-particle distributions is possible using energy-time filtering and that the Wigner representation of the mixed-state density matrix can be reconstructed for solitary electrons emitted by an on-demand single-electron source. These are highly localised distributions, isolated fro…

Density matrixSciencePhysics::Medical PhysicsComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyQuantum entanglementElectron/639/925/92701 natural sciencesGeneral Biochemistry Genetics and Molecular Biology5108 Quantum Physics510symbols.namesake5102 Atomic Molecular and Optical PhysicsElectronic and spintronic devices0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Wigner distribution function010306 general physicslcsh:Science/639/766/1130/2798/639/925/357/1017PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum dotsFermi levelQarticleGeneral ChemistryQuantum tomography021001 nanoscience & nanotechnologyComputational physicsNanoscale devicessymbolslcsh:Q0210 nano-technology51 Physical SciencesCoherence (physics)Fermi Gamma-ray Space Telescope
researchProduct