Search results for "DRUG-DELIVERY"

showing 10 items of 26 documents

Poloxamer/sodium cholate co-formulation for micellar encapsulation of Doxorubicin with high efficiency for intracellular delivery: an in-vitro bioava…

2020

Abstract Hypothesis Doxorubicin hydrochloride (DX) is widely used as a chemotherapeutic agent, though its severe side-effects limit its clinical use. A way to overcome these limitations is to increase DX latency through encapsulation in suitable carriers. However, DX has a high solubility in water, hindering encapsulation. The formulation of DX with sodium cholate (NaC) will reduce aqueous solubility through charge neutralization and hydrophobic interactions thus facilitating DX encapsulation into poloxamer (F127) micelles, increasing drug latency. Experiments DX/NaC/PEO-PPO-PEO triblock copolymer (F127) formulations with high DX content (DX-PMs) have been prepared and characterized by scat…

Biological AvailabilityPoloxamerbile salts; confocal microscopy; Doxorubicin hydrochloride; drug-delivery; PEO-PPO-PEO block copolymers; pluronics; tumour cell lines02 engineering and technologyconfocal microscopypluronics010402 general chemistry01 natural sciencesMicellePolyethylene GlycolsBiomaterialsHydrophobic effectColloid and Surface ChemistryPEO-PPO-PEO block copolymersbile saltsSolubilitySodium CholateMicellesChemistryDoxorubicin hydrochloridePoloxamerSodium Cholate021001 nanoscience & nanotechnologydrug-delivery0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDoxorubicinDrug deliveryBiophysicsDoxorubicin Hydrochloridetumour cell lines0210 nano-technologyIntracellular
researchProduct

Rapid Access to Polyfunctional Lipids with Complex Architecture via Oxyanionic Ring-Opening Polymerization

2011

Polymer-coated liposomes, particularly poly(ethylene glycol) (PEG)-substituted liposomes, have emerged as long-circulating carrier systems for drug delivery and diagnostic purposes. A rapid synthesis of three different types of multifunctional lipids with structurally diverse hydrophilic, polyether-based architectures via one- or two-pot approaches is described. Architectural variation is achieved by the combination of different oxyanionic polymerization strategies and various glycidyl ether building units. Branched polyglycerol lipids have been prepared via cholesterol- or 1,2-bis-n-alkyl glyceryl ether-initiated, oxyanionic ring-opening polymerization (ROP) of protected glycidyl ethers an…

Hyperbranched PolyglycerolsPolymers and PlasticsEffectively ProlongRing-opening polymerizationMicelleCirculation TimeInorganic Chemistrychemistry.chemical_compoundAmphiphilePolymer chemistryMaterials ChemistryCopolymerOrganic chemistryPoly(Ethylene Glycol) CopolymersSolid TumorsCationic-PolymerizationDrug-Delivery SystemsOxide) OligomersEthylene oxideOrganic ChemistryCationic polymerizationEnd-groupchemistryPolymerizationBlock-CopolymersIn-Vivo
researchProduct

Pharmacokinetics of a sustained release formulation of PDGFβ-receptor directed carrier proteins to target the fibrotic liver

2018

Liver fibrogenesis is associated with excessive production of extracellular matrix by myofibroblasts that often leads to cirrhosis and consequently liver dysfunction and death. Novel protein-based antifibrotic drugs show high specificity and efficacy, but their use in the treatment of fibrosis causes a high burden for patients, since repetitive and long-term parenteral administration is required as most proteins and peptides are rapidly cleared from the circulation. Therefore, we developed biodegradable polymeric microspheres for the sustained release of proteinaceous drugs. We encapsulated the drug carrier pPB-HSA, which specifically binds to the PDGF beta R that is highly upregulated on a…

0301 basic medicineLiver CirrhosisMaleCirrhosisPolymersLiver fibrosisPharmaceutical Science02 engineering and technologyPharmacologyMULTIBLOCK-COPOLYMERReceptor Platelet-Derived Growth Factor beta03 medical and health sciencesPharmacokineticsFibrosisIn vivomedicinein vitro in vivo correlationAnimalsControlled releaseFIBROSISBiodegradable polymeric microspheresDRUG-DELIVERYSerum AlbuminIN-VIVOMice KnockoutPOLYMERIC MICROSPHERESDrug CarriersINTERFERON-GAMMAChemistryProtein deliveryAlbuminPDGF beta-receptor targeted drug carrier021001 nanoscience & nanotechnologymedicine.diseaseControlled releaseIMPLANTSMicrospheresANTIFIBROTIC THERAPIESMice Inbred C57BLMICE030104 developmental biologyDelayed-Action PreparationsDrug delivery0210 nano-technologyDrug carrierGROWTH-FACTOR RECEPTOR
researchProduct

Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection

2015

[EN] New hybrid oligonucleotide-capped mesoporous silica nanoparticles able to detect genomic DNA were designed.

DNA BacterialINGENIERIA DE LA CONSTRUCCIONDesignControlled-releaseSupportsOligonucleotidesNanoparticleNanotechnologyCatalysisLegionella pneumophilachemistry.chemical_compoundQUIMICA ORGANICAhemic and lymphatic diseasesCandida albicansBIOQUIMICA Y BIOLOGIA MOLECULARMaterials ChemistryMycoplasma fermentansColoring AgentsStimuliRhodaminesOligonucleotideChemistryQUIMICA INORGANICAMetals and AlloysGenomicsGeneral ChemistryMesoporous silicaSilicon DioxideControlled releaseDrug-deliverySurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsgenomic DNADrug deliveryCeramics and CompositesNanoparticlesDNAChemical Communications
researchProduct

Hyaluronic acid based nanohydrogels fabricated by microfluidics for the potential targeted release of Imatinib: Characterization and preliminary eval…

2019

Abstract Microfluidics is emerging as an innovative technique for the “on chip” fabrication of nanoparticles for drug delivery applications. Here, by using an amphiphilic derivative of hyaluronic acid as a starting macromolecule, nanohydrogels loaded with Imatinib were produced by the microfluidic procedure in order to develop an innovative therapeutic tool for the treatment of retinal neovascularization. Both cyRGDC functionalized and non-functionalized nanohydrogels were designed and fabricated by using the same technique. The targeting efficiency of the obtained nanosystems was studied in vitro on human retinal pigment epithelial cells (HRPEpiC) and human umbilical vein endothelial cells…

Cell SurvivalDrug CompoundingHyaluronic acidMicrofluidicsMicrofluidicsPharmaceutical ScienceAngiogenesis Inhibitors02 engineering and technologyRetinal Pigment Epithelium030226 pharmacology & pharmacyTHERAPYUmbilical veinANGIOGENESISNeovascularization03 medical and health scienceschemistry.chemical_compoundNanoparticle0302 clinical medicineLab-On-A-Chip DevicesAmphiphileHyaluronic acidmedicineHuman Umbilical Vein Endothelial CellsHumansPEPTIDEDRUG-DELIVERYNeovascularizationDrug CarriersChemistryImatinibHydrogels021001 nanoscience & nanotechnologyRANIBIZUMABVEGFIn vitroChoroidal NeovascularizationNanostructuresINTEGRINSMicrofluidicDrug deliveryImatinibImatinib MesylateFeasibility StudiesNanoparticlesmedicine.symptomTargeted delivery0210 nano-technologyBiomedical engineeringmedicine.drug
researchProduct

Acetylcholinesterase-Capped Mesoporous Silica Nanoparticles That Open in the Presence of Diisopropylfluorophosphate (a Sarin or Soman Simulant)

2016

Mesoporous silica nanoparticles loaded with rhodamine B and capped with acetylcholinesterase are able to be selectively opened and deliver their cargo in the presence of nerve agent simulant diisopropyl fluorophosphate (DFP).

NANOCAPSULESRESPONSIVE CONTROLLED-RELEASESarinGATED MATERIALSNanoparticle02 engineering and technologyCHEMICAL WARFARE AGENTS010402 general chemistry01 natural sciencesBiochemistryNanocapsuleschemistry.chemical_compoundQUIMICA ORGANICADESIGNSomanmedicineRhodamine BOrganic chemistryDRUG-DELIVERYPhysical and Theoretical ChemistryNerve agentNANOCONTAINERSChemistryQUIMICA INORGANICAOrganic ChemistryDNAMesoporous silica021001 nanoscience & nanotechnologyGUEST MOLECULES0104 chemical sciencesDiisopropyl fluorophosphateDCNP0210 nano-technologymedicine.drugNuclear chemistryOrganic Letters
researchProduct

Multifunctional Poly(ethylene glycol)s

2011

In the rapidly evolving multidisciplinary field of polymer therapeutics, tailored polymer structures represent the key constituent to explore and harvest the potential of bioactive macromolecular hybrid structures. In light of the recent developments for anticancer drug conjugates, multifunctional polymers are becoming ever more relevant as drug carriers. However, the potentially best suited polymer, poly(ethylene glycol) (PEG), is unfavorable owing to its limited functionality. Therefore, multifunctional linear copolymers (mf-PEGs) based on ethylene oxide (EO) and appropriate epoxide comonomers are attracting increased attention. Precisely engineered via living anionic polymerization and d…

LymphomapolyethersNanotechnologyAntineoplastic AgentsPolyethylene glycolMolecular-WeightCatalysisPolyethylene Glycolschemistry.chemical_compoundepoxidesCopolymerOrganic chemistryAnimalsLiving anionic polymerizationchemistry.chemical_classificationWeight Hyperbranched PolyglycerolsDrug CarriersDrug-Delivery SystemsEthylene oxidepoly(ethylene glycol)Ethylene-OxideGene Transfer TechniquesPolymer TherapeuticsGeneral ChemistryPolymermultivalencybioconjugatesPendant Amino-GroupsPolyethylene-GlycolchemistryPolymerizationAnionic Peg DerivativesDoxorubicinBlock-CopolymersCisplatinIn-VivoDrug carrierPeptidesEthylene glycol
researchProduct

Polymeric and bio-hybrid nanovectors for drug delivery and imaging devices.

2014

Nanotechnology applied to the Medicine is providing new tools to the current therapeutic and diagnostic approaches to fight cancer and other diseases. However, many of the proposed nanodevices show some deficits related to both their inherent properties and performance, and the synthetic strategies proposed for their production. In the present work, a new promising approach based on e-beam radiation-induced radical crosslinking of a water soluble, biocompatible synthetic polymer has been developed. In particular, the possibility of generating Poly-N-(Vinyl- Pyrrolidone)(PVP)-based nanocarriers, i.e. nanogels with a base PVP structure, tailored physico-chemical properties (particles size dis…

Nanogele-beam irradiationBio-imagingbio-conjugationSettore CHIM/07 - Fondamenti Chimici Delle TecnologieDrug-delivery
researchProduct

Programmable assembly of peptide amphiphile via noncovalent-to-covalent bond conversion

2017

Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses r…

Mechanical bondStereochemistryChemistry MultidisciplinaryStatic ElectricitySupramolecular chemistry02 engineering and technology010402 general chemistryPhotochemistryNANOSTRUCTURES01 natural sciencesBiochemistryArticleCatalysisSupramolecular assemblySurface-Active AgentsColloid and Surface ChemistryMicroscopy Electron TransmissionSYSTEMSPeptide amphiphileDRUG-DELIVERYCONTROLLED LENGTHchemistry.chemical_classificationScience & TechnologyMICELLESMolecular StructureChemistryHydrogen bondIntermolecular forceHydrogen BondingGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSUPRAMOLECULAR POLYMERSSupramolecular polymersChemistryPOLYMERIZATIONCovalent bondPhysical SciencesGROWTHPeptides0210 nano-technologyNANOFIBERS
researchProduct

Functionalization of nanoparticles in specific targeting and mechanism release

2017

The development of various nanotechnologies have provided a new field of research, which allows the manipulation of molecular components of matter and covers a vast array of nanodevices. The “smart” multifunctional nanostructures should work as customizable, targeted drug-delivery vehicles capable of carrying large doses of therapeutic agents into malignant cells. Some nanomedical approaches are based on the use of functionalized nanoparticles (NPs), not only to reduce toxicity and side effects of drugs but, also in potential the biological barriers crossing on, such as: the blood–brain barrier, different cellular compartments, including the nucleus. Currently, many materials are used for n…

controlled-releaseMaterials sciencefood.ingredienttechnology industry and agricultureNanoparticleNanotechnology02 engineering and technologyEPR effect010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesControlled releaseGelatin0104 chemical sciencesfoodDrug deliverySelf-healing hydrogelstargeted-nanoparticlesSurface modificationfunctionalizationChemical bindingNanocarriers0210 nano-technologyDrug-delivery system
researchProduct