Search results for "Dimensions"

showing 10 items of 240 documents

Star-polynomial identities: computing the exponential growth of the codimensions

2017

Abstract Can one compute the exponential rate of growth of the ⁎-codimensions of a PI-algebra with involution ⁎ over a field of characteristic zero? It was shown in [2] that any such algebra A has the same ⁎-identities as the Grassmann envelope of a finite dimensional superalgebra with superinvolution B. Here, by exploiting this result we are able to provide an exact estimate of the exponential rate of growth e x p ⁎ ( A ) of any PI-algebra A with involution. It turns out that e x p ⁎ ( A ) is an integer and, in case the base field is algebraically closed, it coincides with the dimension of an admissible subalgebra of maximal dimension of B.

Discrete mathematicsPure mathematicsAlgebra and Number Theory010102 general mathematicsSubalgebra010103 numerical & computational mathematicsBase field01 natural sciencesSuperalgebraExponential functionSettore MAT/02 - AlgebraExponential growthSuperinvolutionPolynomial identity Involution Superinvolution Codimensions0101 mathematicsAlgebraically closed fieldANÉIS E ÁLGEBRAS ASSOCIATIVOSMathematicsRate of growth
researchProduct

Algebras with involution with linear codimension growth

2006

AbstractWe study the ∗-varieties of associative algebras with involution over a field of characteristic zero which are generated by a finite-dimensional algebra. In this setting we give a list of algebras classifying all such ∗-varieties whose sequence of ∗-codimensions is linearly bounded. Moreover, we exhibit a finite list of algebras to be excluded from the ∗-varieties with such property. As a consequence, we find all possible linearly bounded ∗-codimension sequences.

Discrete mathematicsPure mathematicsJordan algebraAlgebra and Number TheoryNon-associative algebraSubalgebraQuadratic algebra∗-CodimensionsSettore MAT/02 - AlgebraInterior algebra*-polynomial identity T*-ideal *-codimensions.∗-Polynomial identityT∗-idealDivision algebraAlgebra representationNest algebraMathematics
researchProduct

Finite-dimensional non-associative algebras and codimension growth

2011

AbstractLet A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded.Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One…

Discrete mathematicsPure mathematicsJordan algebraApplied MathematicsJordan algebraNon-associative algebraSubalgebraUniversal enveloping algebraPolynomial identityExponential growthCodimensionsPolynomial identityCodimensionsExponential growthJordan algebraQuadratic algebraAlgebra representationDivision algebraCellular algebraPOLINÔMIOSMathematicsAdvances in Applied Mathematics
researchProduct

Matrix algebras of polynomial codimension growth

2007

We study associative algebras with unity of polynomial codimension growth. For any fixed degree $k$ we construct associative algebras whose codimension sequence has the largest and the smallest possible polynomial growth of degree $k$. We also explicitly describe the identities and the exponential generating functions of these algebras.

Discrete mathematicsPure mathematicsJordan algebraGeneral MathematicsNon-associative algebraSubalgebraUniversal enveloping algebraCodimensionMatrix polynomialQuadratic algebraSettore MAT/02 - AlgebraAlgebra representationpolynomial identity codimensions growthMathematics
researchProduct

Polynomial growth of the codimensions: a characterization

2009

Let A A be a not necessarily associative algebra over a field of characteristic zero. Here we characterize the T-ideal of identities of A A in case the corresponding sequence of codimensions is polynomially bounded.

Discrete mathematicsPure mathematicsSequencePolynomialApplied MathematicsGeneral MathematicsMathematicsofComputing_GENERALZero (complex analysis)Field (mathematics)Characterization (mathematics)codimensions polynomial identityBounded functionAssociative algebraGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Mathematics
researchProduct

An almost nilpotent variety of exponent 2

2013

We construct a non-associative algebra A over a field of characteristic zero with the following properties: if V is the variety generated by A, then V has exponential growth but any proper subvariety of V is nilpotent. Moreover, by studying the asymptotics of the sequence of codimensions of A we deduce that exp(V) = 2.

Discrete mathematicsPure mathematicsSequenceSubvarietyGeneral MathematicsZero (complex analysis)Field (mathematics)Variety codimensions growth.NilpotentSettore MAT/02 - AlgebraExponential growthExponentVariety (universal algebra)Mathematics
researchProduct

On almost nilpotent varieties of subexponential growth

2015

Abstract Let N 2 be the variety of left-nilpotent algebras of index two, that is the variety of algebras satisfying the identity x ( y z ) ≡ 0 . We introduce two new varieties, denoted by V sym and V alt , contained in the variety N 2 and we prove that V sym and V alt are the only two varieties almost nilpotent of subexponential growth.

Discrete mathematicsSecondaryAlgebra and Number TheoryCodimensionPolynomial identityCombinatoricsSettore MAT/02 - AlgebraMathematics::Group TheoryIdentity (mathematics)NilpotentCodimensionVarietyVariety (universal algebra)Nilpotent groupAlmost nilpotentPrimaryPolinomial identities. Variety Codimensions Growth.MathematicsJournal of Algebra
researchProduct

Characterizing varieties of colength ≤4

2009

Let A be an associative algebra over a field F of characteristic zero, and let χ n (A), n = 1,2,…, be the sequence of cocharacters of A. For every n ≥ 1, let l n (A) denote the nth colength of A, counting the number of S n -irreducibles appearing in χ n (A). In this article, we classify the algebras A such that the sequence of colengths l n (A), n = 1,2,…, is bounded by four. Moreover we construct a finite number of algebras A 1,…, A d , such that l n (A) ≤ 4 if and only if A 1,…, A d  ∉ var(A).

Discrete mathematicsSequenceAlgebra and Number TheoryZero (complex analysis)Field (mathematics)Codimensions; Colengths; Polynomial identity; VarietyPolynomial identitySettore MAT/02 - AlgebraBounded functionCodimensionAssociative algebraVarietyColengthVariety (universal algebra)Finite setMathematics
researchProduct

Polynomial identities on superalgebras and exponential growth

2003

Abstract Let A be a finitely generated superalgebra over a field F of characteristic 0. To the graded polynomial identities of A one associates a numerical sequence {cnsup(A)}n⩾1 called the sequence of graded codimensions of A. In case A satisfies an ordinary polynomial identity, such sequence is exponentially bounded and we capture its exponential growth by proving that for any such algebra lim n→∞ c n sup (A) n exists and is a non-negative integer; we denote such integer by supexp(A) and we give an effective way for computing it. As an application, we construct eight superalgebras Ai, i=1,…,8, characterizing the identities of any finitely generated superalgebra A with supexp(A)>2 in the f…

Discrete mathematicsSequencePolynomialSuperalgebrasAlgebra and Number TheoryMathematics::Rings and AlgebrasField (mathematics)GrowthSuperalgebraCodimensionsPolynomial identitiesIdentity (mathematics)IntegerBounded functionIdeal (ring theory)MathematicsJournal of Algebra
researchProduct

Proper identities, Lie identities and exponential codimension growth

2008

Abstract The exponent exp ( A ) of a PI-algebra A in characteristic zero is an integer and measures the exponential rate of growth of the sequence of codimensions of A [A. Giambruno, M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998) 145–155; A. Giambruno, M. Zaicev, Exponential codimension growth of P.I. algebras: An exact estimate, Adv. Math. 142 (1999) 221–243]. In this paper we study the exponential rate of growth of the sequences of proper codimensions and Lie codimensions of an associative PI-algebra. We prove that the corresponding proper exponent exists for all PI-algebras, except for some algebras of exponent two strictly related to t…

Discrete mathematicsSequencePure mathematicsAlgebra and Number TheoryZero (complex analysis)CodimensionExponential functionPolynomial identitiesIntegerpolynomial identity codimensionsExponentCodimension growthExterior algebraAssociative propertyMathematics
researchProduct