Search results for "Disordered system"
showing 10 items of 244 documents
Inverse simulated annealing: Improvements and application to amorphous InSb
2014
An improved inverse simulated annealing method is presented to determine the structure of complex disordered systems from first principles in agreement with available experimental data or desired predetermined target properties. The effectiveness of this method is demonstrated by revisiting the structure of amorphous InSb. The resulting network is mostly tetrahedral and in excellent agreement with available experimental data.
Wave-Vector Dependence of the Dynamics in Supercooled Metallic Liquids
2020
Physical review letters 125(5), 055701 (2020). doi:10.1103/PhysRevLett.125.055701
Isotope effects on the dynamics of a supercooled van der Waals liquid
2000
Deuteron magnetic resonance was used to study three differently isotope-labeled species of the fragile glass-forming liquid ortho-terphenyl. The calorimetric glass transition of the isotope deuterated only at the central phenyl ring is significantly lower than that of the perdeuterated one. It is shown that while the ortho-terphenyl molecule is not as rigid as previously often assumed, its overall reorientation geometry is independent of deuteration. The characteristic jump angles are found to increase with temperature, thus resolving an apparent discrepancy previously noted when comparing typical jump sizes from NMR with other data.
Glassy dynamics in monodisperse hard ellipsoids
2008
We present evidence from computer simulations for glassy dynamics in suspensions of monodisperse hard ellipsoids. In equilibrium, almost spherical ellipsoids show a first order transition from an isotropic phase to a rotator phase. When overcompressing the isotropic phase into the rotator regime, we observe super-Arrhenius slowing down of diffusion and relaxation, accompanied by two-step relaxation in positional and orientational correlators. The effects are strong enough for asymptotic laws of mode-coupling theory to apply. Glassy dynamics are unusual in monodisperse systems. Typically, polydispersity in size or a mixture of particle species is prerequisite to prevent crystallization. Here…
Molecular Dynamics Simulations
2003
A tutorial introduction to the technique of Molecular Dynamics (MD) is given, and some characteristic examples of applications are described. The purpose and scope of these simulations and the relation to other simulation methods is discussed, and the basic MD algorithms are described. The sampling of intensive variables (temperature T, pressure p) in runs carried out in the microcanonical (NVE) ensemble (N= particle number, V = volume, E = energy) is discussed, as well as the realization of other ensembles (e.g. the NVT ensemble). For a typical application example, molten SiO2, the estimation of various transport coefficients (self-diffusion constants, viscosity, thermal conductivity) is d…
Luminescence of localized states in oxidized and fluorinated silica glass
2019
This work was supported by the Latvian Science Council Grant No lzp-2018/1-0289.
EPR characterization of erbium in glasses and glass ceramics
2020
Electron paramagnetic resonance (EPR) is a well-established spectroscopic technique for electronic structure characterization of rare-earth ion impurities in crystalline and amorphous hosts. EPR spectra of erbium-doped glass matrices and nanocomposites can provide information about local structure variations induced by changes in chemical composition or crystallization processes. Characterization possibilities of Er3+ ions in glasses and glass ceramics including direct EPR measurements, indirect investigations via secondary paramagnetic probes, and optically detected magnetic resonance techniques are considered in this article. ----/ / /---- This is the pre-print of the following article: A…
Size effects in micro- and nanoscale indentation
2006
Abstract The indentation size effect (ISE) has been studied in single crystals, polycrystals and amorphous solids using the Vickers microhardness test. The ISE is clearly present in single crystals but is absent in fine-grained polycrystals. A size-dependent hardness for amorphous solids is observed only in the sub-micrometre surface layer. The behaviour of the ISE in single crystals for micro- and nanoindentation is compared. Estimates of the surface hardness are made by the extrapolation of the experimental hardness–indentation depth curves. The extrapolated hardness in the surface region reaches values corresponding to the theoretical shear strength. The results confirm the multifarious …
Monte Carlo modelling of the polymer glass transition
1993
We are proposing a lattice model with chemical input for the computer modelling of the polymer glass transition. The chemical input information is obtained by a coarse graining procedure applied to a microscopic model with full chemical detail. We use this information on Bisphenol-A-Polycarbonate to predict it's Vogel-Fulcher temperature out of a dynamic Monte Carlo Simulation. The microscopic structure of the lattice model is that of a genuine amorphous material, and the structural relaxation obeys the time temperature superposition.
Role of thermal history on quiescent cold crystallization of PET
2002
8 pags., 9 figs.