Search results for "EPITAXY"

showing 10 items of 287 documents

Epitaxy of thin films of the Heusler compound

2007

Abstract Epitaxial thin films of the highly spin polarized Heusler compound Co 2 Cr 0.6 Fe 0.4 Al are deposited by DC magnetron sputtering. It is shown by XRD and TEM investigations how the use of an Fe buffer layer on MgO(1 0 0) substrates supports the growth of highly ordered Co 2 Cr 0.6 Fe 0.4 Al at low deposition temperatures. The as-grown samples show a relatively large ordered magnetic moment of μ ≃ 3.0 μ B / f . u . providing evidence for a low level of disorder.

Condensed matter physicsMagnetic momentChemistryAnalytical chemistrySputter depositionengineering.materialCondensed Matter PhysicsEpitaxyHeusler compoundInorganic ChemistryPhysical vapor depositionMaterials ChemistryengineeringThin filmLayer (electronics)Deposition (law)Journal of Crystal Growth
researchProduct

Study of the MOCVD growth of ZnO on GaAs substrates: Influence of the molar ratio of the precursors on structural and morphological properties

2007

Abstract ZnO thin films were grown by metal-organic chemical vapour deposition (MOCVD) on GaAs(100) and GaAs(111)A substrates. The growth experiments were performed at temperatures ranging from 290 to 500 ∘C and atmospheric pressure. Diethylzinc (DEZn) and tertiary butanol (tBuOH) were used as Zn and O precursors, respectively. The crystallinity of the grown films was studied by X-Ray Diffraction (XRD) and the thickness and morphology were investigated by Scanning Electron Microscopy (SEM). The influence of substrate orientation and molar ratio of the precursors on the crystalline orientation and morphology of the ZnO grown films was analysed.

CrystallinityMorphology (linguistics)Materials scienceAtmospheric pressureChemical engineeringScanning electron microscopeGeneral Materials ScienceSubstrate (electronics)Chemical vapor depositionMetalorganic vapour phase epitaxyElectrical and Electronic EngineeringThin filmCondensed Matter PhysicsSuperlattices and Microstructures
researchProduct

Properties of small clusters at ionic surfaces: (NaCl)nclusters (n=1–48) at the (100) MgO surface

1995

We have studied the geometry, binding energy, interaction with the surface, barriers for diffusion, optical absorption, and the possibility for their observation using atomic force microscopy of (NaCl${)}_{\mathit{n}}$ clusters (n=1--48) on the (100) MgO surface. We address the questions at which cluster size do the adsorbed molecules lose their identity and how do strained clusters accommodate the strain. The relation between the structure of initial molecular fragments adsorbed at the surface and the structure of the corresponding thick film is discussed. The results are compared with the calculated structures of the free clusters and the experimental data on the molecular-beam epitaxy of…

CrystallographyMaterials scienceAdsorptionBinding energyMoleculeIonic bondingElectronic structureAtomic physicsAbsorption (chemistry)EpitaxyAlkali metalPhysical Review B
researchProduct

Growth and defect studies of CdTe particles

2013

The paper reports the epitaxial growth of cadmium telluride (CdTe) particles by thermal deposition on cleaved planes of (001)NaCl and (001)KBr. Using high resolution transmission electron microscopy and electron diffraction it was shown that CdTe particles could have different orientation and phase (cubic or hexagonal) depending on the substrate temperature. Their most common defects are twins and stacking faults.

CrystallographyMaterials scienceElectron diffractionParticleGeneral Materials ScienceGeneral ChemistrySubstrate (electronics)Condensed Matter PhysicsEpitaxyCrystal twinningHigh-resolution transmission electron microscopyCadmium telluride photovoltaicsStacking faultCrystal Research and Technology
researchProduct

Electron Diffraction and Imaging of Uncompressed Monolayers of Amphiphilic Molecules on Vitreous and Hexagonal Ice

1993

A new approach is described for probing domains of ordered self-assemblies of amphiphilic monolayers at the aqueous solution interface. The method has potential importance for the study of membrane structure, Langmuir-Blodgett films, and nucleation processes of two-and three-dimensional crystals. Electron diffraction (ED) patterns indicative of two-dimensional crystalline self-assembly were obtained from samples, which were examined by cryo-electron microscopy, of monolayers of water-insoluble amphiphiles on vitrified aqueour substrates. The apparent hexagonal symmetry of an ED pattern from a C(16)H(33)OH monolayer was interpreted in terms of multiple twinning. Monolayers of the CL(31)H(63)…

CrystallographyMultidisciplinaryAqueous solutionElectron diffractionChemistryStereochemistryMonolayerMicroscopyNucleationCrystalliteCrystal twinningEpitaxyScience
researchProduct

Structure analysis on the nanoscale: closed WS2 nanoboxes through a cascade of topo- and epitactic processes

2014

Closed WS2 nanoboxes were formed by topotactic sulfidization of a WO3/WO3·⅓H2O intergrowth precursor. Automated diffraction tomography was used to elucidate the growth mechanism of these unconventional hollow structures. By partial conversion and structural analysis of the products, each of them representing a snapshot of the reaction at a given point in time, the overall reaction can be broken down into a cascade of individual steps and each of them identified with a basic mechanism. During the initial step of sulfidization WO3·⅓H2O transforms into hexagonal WO3 whose surface allows for the epitaxial induction of WS2. The initially formed platelets of WS2 exhibit a preferred orientation wi…

CrystallographyStructure analysisCascadeChemical physicsHexagonal crystal systemChemistryGeneral Materials ScienceNanorodGeneral ChemistryCondensed Matter PhysicsEpitaxyNanoscopic scale
researchProduct

A liquid alkoxide precursor for the atomic layer deposition of aluminum oxide films

2020

For large-scale atomic layer deposition (ALD) of alumina, the most commonly used alkyl precursor trimethylaluminum poses safety issues due to its pyrophoric nature. In this work, the authors have investigated a liquid alkoxide, aluminum tri-sec-butoxide (ATSB), as a precursor for ALD deposition of alumina. ATSB is thermally stable and the liquid nature facilitates handling in a bubbler and potentially enables liquid injection toward upscaling. Both thermal and plasma enhanced ALD processes are investigated in a vacuum type reactor by using water, oxygen plasma, and water plasma as coreactants. All processes achieved ALD deposition at a growth rate of 1-1.4 angstrom/cycle for substrate tempe…

DECOMPOSITIONMaterials scienceSubstrate (electronics)Chemical vapor depositionEPITAXYEpitaxyPyrophoricitychemistry.chemical_compoundAtomic layer depositionTHIN-FILMSDeposition (phase transition)alumiiniThin filmTEMPERATUREplasma processingAL2O3Surfaces and InterfacesatomikerroskasvatusCondensed Matter PhysicsSurfaces Coatings and FilmsChemistryCHEMICAL-VAPOR-DEPOSITIONPhysics and AstronomySINGLEchemistryChemical engineeringALDatomic layer depositionAlkoxideGROWTHohutkalvotJournal of Vacuum Science & Technology A
researchProduct

Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots

2012

We have investigated the temperature dependent recombination dynamics in two bimodally distributed InAs self assembled quantum dots samples. A rate equations model has been implemented to investigate the thermally activated carrier escape mechanism which changes from exciton-like to uncorrelated electron and hole pairs as the quantum dot size varies. For the smaller dots, we find a hot exciton thermal escape process. We evaluated the thermal transfer process between quantum dots by the quantum dot density and carrier escape properties of both samples. © 2012 American Institute of Physics.

DYNAMICSMaterials scienceAtmospheric escapeCondensed matter physicsExcitonGeneral Physics and AstronomyElectronRate equationThermal transferEPITAXYCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGallium arsenidechemistry.chemical_compoundCondensed Matter::Materials SciencechemistrySTATESself assembled quantum dots rate equations model carrier escape propertiesQuantum dotQuantum dot laserLUMINESCENCEPHOTOLUMINESCENCE
researchProduct

Growth temperature influence on the GaN nanowires grown by MOVPE technique

2011

GaN nanowires (NWs) were successfully grown by Vapor-Liquid-Solid (VLS) growth mechanism on GaN template using metal-organic vapor phase epitaxy (MOVPE) with diameters ranging from 20 to 200 nm and length up to few microns. The characterization by scanning electron microscopy (SEM) reveals an optimum growth temperature at 790°C and X-ray diffraction (XRD) investigations indicates oriented crystallinity of grown NWs.

DiffractionCrystallographyCrystallinityMaterials sciencebusiness.industryScanning electron microscopeOptimum growthNanowireOptoelectronicsMetalorganic vapour phase epitaxyVapor–liquid–solid methodbusinessEpitaxyIOP Conference Series: Materials Science and Engineering
researchProduct

X‐ray characterization of CdO thin films grown on a ‐, c ‐, r ‐ and m ‐plane sapphire by metalorganic vapour phase‐epitaxy

2005

CdO thin films have been grown on a-plane (110), c-plane (0001), r-plane (012) and m-plane (100) sapphire substrates by metalorganic vapour-phase epitaxy (MOVPE). The effects of different substrate orientations on the structural properties of the films have been analyzed by means of X-ray diffraction, including θ-2θ scans, pole figures and rocking curves. (111), (001) and (110) orientations are found on a-, r-, and m-sapphire respectively, while films deposited on c-plane exhibit an orientation in which no low-index crystal plane is parallel to the sample surface. The recorded pole figures have allowed determining the epitaxial relationships between films and substrates, as well as the pres…

DiffractionCrystallographyTilt (optics)Materials scienceX-raySapphireMetalorganic vapour phase epitaxySubstrate (electronics)Thin filmEpitaxyphysica status solidi (c)
researchProduct