Search results for "Formal languages"

showing 10 items of 322 documents

Normal, Abby Normal, Prefix Normal

2014

A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. This class of words is important in the context of binary jumbled pattern matching. In this paper we present results about the number $pnw(n)$ of prefix normal words of length $n$, showing that $pnw(n) =\Omega\left(2^{n - c\sqrt{n\ln n}}\right)$ for some $c$ and $pnw(n) = O \left(\frac{2^n (\ln n)^2}{n}\right)$. We introduce efficient algorithms for testing the prefix normal property and a "mechanical algorithm" for computing prefix normal forms. We also include games which can be played with prefix normal words. In these games Alice wishes to stay normal but Bob wants t…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Computer Science - Data Structures and AlgorithmsFOS: MathematicsMathematics - CombinatoricsData Structures and Algorithms (cs.DS)Computer Science - Formal Languages and Automata TheoryCombinatorics (math.CO)Data_CODINGANDINFORMATIONTHEORYComputer Science - Discrete Mathematics
researchProduct

Cyclic Complexity of Words

2014

We introduce and study a complexity function on words $c_x(n),$ called \emph{cyclic complexity}, which counts the number of conjugacy classes of factors of length $n$ of an infinite word $x.$ We extend the well-known Morse-Hedlund theorem to the setting of cyclic complexity by showing that a word is ultimately periodic if and only if it has bounded cyclic complexity. Unlike most complexity functions, cyclic complexity distinguishes between Sturmian words of different slopes. We prove that if $x$ is a Sturmian word and $y$ is a word having the same cyclic complexity of $x,$ then up to renaming letters, $x$ and $y$ have the same set of factors. In particular, $y$ is also Sturmian of slope equ…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata Theory0102 computer and information sciences68R15Characterization (mathematics)[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesTheoretical Computer ScienceCombinatoricsConjugacy class[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL][MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - Combinatorics0101 mathematics[MATH]Mathematics [math]Discrete Mathematics and CombinatoricMathematicsDiscrete mathematicsFactor complexity010102 general mathematicsSturmian wordSturmian wordComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Sturmian wordsCyclic complexity factor complexity Sturmian words minimal forbidden factorInfimum and supremumToeplitz matrixComputational Theory and Mathematics010201 computation theory & mathematicsCyclic complexityBounded functionComplexity functionCombinatorics (math.CO)Word (group theory)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Anti-powers in infinite words

2018

In combinatorics of words, a concatenation of $k$ consecutive equal blocks is called a power of order $k$. In this paper we take a different point of view and define an anti-power of order $k$ as a concatenation of $k$ consecutive pairwise distinct blocks of the same length. As a main result, we show that every infinite word contains powers of any order or anti-powers of any order. That is, the existence of powers or anti-powers is an unavoidable regularity. Indeed, we prove a stronger result, which relates the density of anti-powers to the existence of a factor that occurs with arbitrary exponent. As a consequence, we show that in every aperiodic uniformly recurrent word, anti-powers of ev…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)ConcatenationComputer Science - Formal Languages and Automata Theory68R150102 computer and information sciences01 natural sciencesTheoretical Computer ScienceCombinatoricsUnavoidable regularityPosition (vector)Infinite wordAvoidability[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsMathematics - CombinatoricsDiscrete Mathematics and CombinatoricsOrder (group theory)Point (geometry)0101 mathematicsDiscrete Mathematics and CombinatoricMathematicsDiscrete mathematics000 Computer science knowledge general worksAnti-power010101 applied mathematicsComputational Theory and Mathematics010201 computation theory & mathematicsAperiodic graphComputer ScienceExponentPairwise comparisonCombinatorics (math.CO)SoftwareWord (group theory)Computer Science - Discrete Mathematics
researchProduct

Factorizations of the Fibonacci Infinite Word

2015

The aim of this note is to survey the factorizations of the Fibonacci infinite word that make use of the Fibonacci words and other related words, and to show that all these factorizations can be easily derived in sequence starting from elementary properties of the Fibonacci numbers.

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Crochemore factorizationComputer Science - Formal Languages and Automata Theory68R15Fibonacci wordLempel-Ziv factorizationLyndon factorizationFOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - CombinatoricsZeckendorf representationCrochemore factorization; Fibonacci word; Lempel-Ziv factorization; Lyndon factorization; Zeckendorf representation; Discrete Mathematics and CombinatoricsCombinatorics (math.CO)Computer Science - Discrete Mathematics
researchProduct

The sequence of open and closed prefixes of a Sturmian word

2017

A finite word is closed if it contains a factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We are interested in the {\it oc-sequence} of a word, which is the binary sequence whose $n$-th element is $0$ if the prefix of length $n$ of the word is open, or $1$ if it is closed. We exhibit results showing that this sequence is deeply related to the combinatorial and periodic structure of a word. In the case of Sturmian words, we show that these are uniquely determined (up to renaming letters) by their oc-sequence. Moreover, we prove that the class of finite Sturmian words is a maximal element with this property in the class of binar…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Sturmian word closed wordComputer Science - Formal Languages and Automata Theory0102 computer and information sciences68R1501 natural sciencesPseudorandom binary sequenceCombinatorics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsMathematics - Combinatorics0101 mathematicsMathematicsSequenceClosed wordSettore INF/01 - InformaticaApplied Mathematics010102 general mathematicsSturmian wordSturmian wordPrefix010201 computation theory & mathematicsCombinatorics (math.CO)SuffixElement (category theory)Word (computer architecture)Maximal elementComputer Science - Discrete Mathematics
researchProduct

A note on easy and efficient computation of full abelian periods of a word

2016

Constantinescu and Ilie (Bulletin of the EATCS 89, 167-170, 2006) introduced the idea of an Abelian period with head and tail of a finite word. An Abelian period is called full if both the head and the tail are empty. We present a simple and easy-to-implement $O(n\log\log n)$-time algorithm for computing all the full Abelian periods of a word of length $n$ over a constant-size alphabet. Experiments show that our algorithm significantly outperforms the $O(n)$ algorithm proposed by Kociumaka et al. (Proc. of STACS, 245-256, 2013) for the same problem.

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS][INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]Elementary abelian groupComputer Science - Formal Languages and Automata Theory0102 computer and information sciences02 engineering and technology[INFO] Computer Science [cs]01 natural sciencesRank of an abelian groupCombinatoricsSimple (abstract algebra)Computer Science - Data Structures and Algorithms0202 electrical engineering electronic engineering information engineeringDiscrete Mathematics and CombinatoricsData Structures and Algorithms (cs.DS)[INFO]Computer Science [cs]Abelian groupHidden subgroup problemDiscrete Mathematics and CombinatoricComputingMilieux_MISCELLANEOUSMathematicsCombinatorics on wordDiscrete mathematicsApplied Mathematics020206 networking & telecommunicationsAbelian periodText algorithmWeak repetitionFree abelian groupAbelian powerCombinatorics on wordsDesign of algorithm010201 computation theory & mathematicsWord (computer architecture)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Abelian combinatorics on words: A survey

2022

We survey known results and open problems in abelian combinatorics on words. Abelian combinatorics on words is the extension to the commutative setting of the classical theory of combinatorics on words. The extension is based on \emph{abelian equivalence}, which is the equivalence relation defined in the set of words by having the same Parikh vector, that is, the same number of occurrences of each letter of the alphabet. In the past few years, there was a lot of research on abelian analogues of classical definitions and properties in combinatorics on words. This survey aims to gather these results.

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)General Computer ScienceFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryAbelian combinatorics on word68R15Discrete mathematicsTheoretical Computer ScienceFOS: MathematicsMathematics - CombinatoricsCombinatorics (math.CO)Computer Science - Discrete MathematicsCombinatorics on wordComputer Science Review
researchProduct

Splicing Systems from Past to Future: Old and New Challenges

2014

A splicing system is a formal model of a recombinant behaviour of sets of double stranded DNA molecules when acted on by restriction enzymes and ligase. In this survey we will concentrate on a specific behaviour of a type of splicing systems, introduced by P\u{a}un and subsequently developed by many researchers in both linear and circular case of splicing definition. In particular, we will present recent results on this topic and how they stimulate new challenging investigations.

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL]Formal Languages and Automata Theory (cs.FL)Splicing Systems Formal Languages.ACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.3: Formal LanguagesACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.2: Grammars and Other Rewriting SystemsComputer Science - Formal Languages and Automata TheorySplicing Systems Formal languages Regular languages DNA computingComputingMilieux_MISCELLANEOUS[INFO.INFO-FL] Computer Science [cs]/Formal Languages and Automata Theory [cs.FL]Computer Science - Discrete Mathematics
researchProduct

Computational Limitations of Affine Automata

2019

We present two new results on the computational limitations of affine automata. First, we show that the computation of bounded-error rational-values affine automata is simulated in logarithmic space. Second, we give an impossibility result for algebraic-valued affine automata. As a result, we identify some unary languages (in logarithmic space) that are not recognized by algebraic-valued affine automata with cutpoints.

FOS: Computer and information sciencesDiscrete mathematics050101 languages & linguisticsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESUnary operationFormal Languages and Automata Theory (cs.FL)Computer scienceComputation05 social sciencesComputer Science - Formal Languages and Automata Theory02 engineering and technology[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Nonlinear Sciences::Cellular Automata and Lattice GasesLogarithmic spaceAutomatonTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing0501 psychology and cognitive sciencesAffine transformationImpossibilityComputer Science::Formal Languages and Automata TheoryComputingMilieux_MISCELLANEOUS
researchProduct

Monoids and Maximal Codes

2011

In recent years codes that are not Uniquely Decipherable (UD) are been studied partitioning them in classes that localize the ambiguities of the code. A natural question is how we can extend the notion of maximality to codes that are not UD. In this paper we give an answer to this question. To do this we introduce a partial order in the set of submonoids of a monoid showing the existence, in this poset, of maximal elements that we call full monoids. Then a set of generators of a full monoid is, by definition, a maximal code. We show how this definition extends, in a natural way, the existing definition concerning UD codes and we find a characteristic property of a monoid generated by a maxi…

FOS: Computer and information sciencesDiscrete mathematicsMonoidCode (set theory)Formal Languages and Automata Theory (cs.FL)lcsh:MathematicsComputer Science - Formal Languages and Automata TheoryAstrophysics::Cosmology and Extragalactic Astrophysicslcsh:QA1-939lcsh:QA75.5-76.95Set (abstract data type)chemistry.chemical_compoundchemistryFOS: MathematicsMathematics - CombinatoricsOrder (group theory)High Energy Physics::ExperimentCombinatorics (math.CO)lcsh:Electronic computers. Computer scienceCharacteristic propertyPartially ordered setMaximal elementMathematicsElectronic Proceedings in Theoretical Computer Science
researchProduct