Search results for "Immunosensor"
showing 7 items of 7 documents
Label-free piezoelectric biosensor for prognosis and diagnosis of Systemic Lupus Erythematosus
2017
[EN] An autoantigen piezoelectric sensor to quantify specific circulating autoantibodies in human serum is developed. The sensor consisted on a quartz crystal microbalance with dissipation monitoring (QCM-D) where TRIM21 and TROVE2 autoantigens were covalently immobilized, allowing the selective determination of autoantibodies for diagnosis and prognosis of Systemic Lupus Erythematosus (SLE). The sensitivity of the biosensor, measured as IC50 value, was 1.51 U/mL and 0.32 U/mL, for anti-TRIM21 and anti-TROVE2 circulating autoantibodies, respectively. The sensor is also able to establish a structural interaction fingerprint pattern or profile of circulating autoantibodies, what allows scorin…
Photoluminescence immunosensor based on bovine leukemia virus proteins immobilized on the ZnO nanorods
2019
Bovine leukaemia virus (BLV) proteins gp51, which are serving as antigens for specific antibodies against BLV proteins (anti-gp51), were applied as biological recognition part in the design of immunosensor devoted for the determination of anti-gp51. The efficiency of the immobilization of BLV proteins gp51 on ZnO nanorod (ZnO- NR) modified glass (ZnO-NR/glass) surface was evaluated. The formation of antigen-antibody complex on the ZnO/glass modified by the BLV proteins gp51 (gp51/ZnO-NR/glass) was investigated by the determination of changes in ZnO photoluminescence. The applicability of gp51/ZnO-NR/glass in the design of photoluminescence based immunosensor was evaluated. Bovine serum albu…
Affinity Sensors for the Diagnosis of COVID-19
2021
The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was proclaimed a global pandemic in March 2020. Reducing the dissemination rate, in particular by tracking the infected people and their contacts, is the main instrument against infection spreading. Therefore, the creation and implementation of fast, reliable and responsive methods suitable for the diagnosis of COVID-19 are required. These needs can be fulfilled using affinity sensors, which differ in applied detection methods and markers that are generating analytical signals. Recently, nucleic acid hybridization, antigen-antibody interaction, and change of reactive oxyge…
Label-free wavelength and phase detection based SMS fiber immunosensors optimized with cladding etching
2018
The performance of E-SMS (Etched Singlemode-Multimode-Singlemode) optical fiber structures as immunosensors has been assessed by the implementation of antibody/antigen immunoassays. Through this procedure it has been proven that E-SMS structures are effective and suitable optical platforms for label-free biosensing. Using the phase shift and tracking the wavelength response it was found that the fabricated E-SMS devices exhibited limits of detection (LOD) down up to concentrations of 0.2mg/L of antigens in solution. This was achieved by coating the E-SMS with an antibody-based biolayer (goat IgG) that is able to determine the presence of anti-goat IgG antigen. Both a wavelength detection an…
Biosensors for the determination of SARS-CoV-2 virus and diagnosis of COVID-19 infection
2022
Monitoring and tracking infection is required in order to reduce the spread of the coronavirus disease 2019 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, the development and deployment of quick, accurate, and sensitive diagnostic methods are necessary. The determination of the SARS-CoV-2 virus is performed by biosensing devices, which vary according to detection methods and the biomarkers which are inducing/providing an analytical signal. RNA hybridisation, antigen-antibody affinity interaction, and a variety of other biological reactions are commonly used to generate analytical signals that can be precisely detected using electro…
Toward development of optical biosensors based on photoluminescence of TiO2 nanoparticles for the detection of Salmonella
2017
Quality control of food and agriculture production is an inseparable part of human safety and wellbeing. Salmonella infections belong to one of the most monitored pathogens in the world, therefore advanced determination of this pathogen can decrease the risks of human diseases caused by this microorganism. In this research we introduce a novel optical immunosensor for determination of Salmonella typhimurium. The immunosensor is based on Titanium dioxide (TiO2) nanoparticles deposited on glass substrates (glass/TiO2)center dot TiO2 nanoparticles exhibit an intense photoluminescence (PL) in the visible range of spectrum at room temperature. The direct immobilization of antibodies (anti-S-Ab) …
Electrochemical Synthesis of Zinc Oxide Nanostructures on Flexible Substrate and Application as an Electrochemical Immunoglobulin-G Immunosensor
2022
Immunoglobulin G (IgG), a type of antibody, represents approximately 75% of serum antibodies in humans, and is the most common type of antibody found in blood circulation. Consequently, the development of simple, fast and reliable systems for IgG detection, which can be achieved using electrochemical sandwich-type immunosensors, is of considerable interest. In this study we have developed an immunosensor for human (H)-IgG using an inexpensive and very simple fabrication method based on ZnO nanorods (NRs) obtained through the electrodeposition of ZnO. The ZnO NRs were treated by electrodepositing a layer of reduced graphene oxide (rGO) to ensure an easy immobilization of the antibodies. On I…